
Using IPUMS data in R with ipumsrUsing IPUMS data in R with ipumsr
Derek Burk, Dan Ehrlich, & Kara FisherDerek Burk, Dan Ehrlich, & Kara Fisher

10/12/202110/12/2021

1 / 851 / 85

Who we are
Derek Burk, PhD

Sociology

Dan Ehrlich, MA

Anthropology

Kara Fisher, MPH

Public Health

2 / 85

Who we are

3 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

4 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

5 / 85

What is IPUMS?
IPUMS is data

from censuses and surveys around the world,

integrated across space and time,

thoroughly documented,

and available for free at ipums.org

6 / 85

Poll: Which IPUMS data collections have you
used already?

7 / 85

U.S. Census and American Community Survey microdata from 1850 to
the present.

180,755,919 unique person records from decennial census and American
Community Survey.

191,983,898 historical person records from full count decennial census
from 1850-1940 (1890 census lost due to fire).

https://usa.ipums.org/usa/

8 / 85

https://usa.ipums.org/usa/

Current Population Survey microdata from 1962 to the present.

Monthly labor force surveys and supplements.

https://cps.ipums.org/cps/

9 / 85

https://cps.ipums.org/cps/

Census microdata covering 102 countries from 1960 to the present

International historic microdata from the 19th and early 20th centuries
for 9 countries.

Labor Force surveys provide high resolution microdata about work
conditions

Administered quarterly (usually) with records going back at least 10
years (usually)
Currently available for Italy (2011-2020) & Spain (2005-2020)
Mexico (2005-2020) coming soon!

https://international.ipums.org/international/

10 / 85

https://international.ipums.org/international/

Demographic and Health Surveys (DHS) provide integrated microdata for
analysis across time and space.

From the 1980s to the present.
Covering Africa and South Asia

Performance Monitoring for Action (PMA) surveys

Focus on fertility, contraception, hygiene, and health
Administered frequently to monitor trends in select high-fertility
countries.
https://ipums.github.io/pma-data-
hub/index.html#category:PMA_Publications

https://globalhealth.ipums.org/

11 / 85

https://ipums.github.io/pma-data-hub/index.html#category:PMA_Publications
https://globalhealth.ipums.org/

Health survey data from the National Health Interview Survey (NHIS)
from the 1960s to the present and the Medical Expenditure Panel Survey
(MEPS) from 1996.

Supplements on cost of healthcare.

https://healthsurveys.ipums.org/

12 / 85

https://healthsurveys.ipums.org/

Scientists and Engineers Statistical Data System (SESTAT), the leading
surveys for studying the science and engineering (STEM) workforce in the
United States

Data from the National Surveys of College Graduates (NSCG), Recent
College Graduates (NSRCG) and Doctorate Recipients (SDR) are integrated
from 1993 to the present.

https://highered.ipums.org/highered/

13 / 85

https://highered.ipums.org/highered/

Historical and contemporary time use data from 1965 to the present.

Extensive time diary data from respondents in the US and 7 other
countries.

https://timeuse.ipums.org/

14 / 85

https://timeuse.ipums.org/

Summary tables and time series of population, housing, agriculture, and
economic data

GIS Shapefiles for all levels of US geography, including tracts, from 1790 to
the present

https://www.nhgis.org/

15 / 85

https://www.nhgis.org/

Summary data tables from population and housing censuses as well as
agricultural censuses from around the world

Integrated GIS shapefiles.

https://ihgis.ipums.org/

16 / 85

https://ihgis.ipums.org/

Poll: Which IPUMS data collections are you
most excited to use in the future ?

17 / 85

IPUMS is a lot of data

United in consistently
documented metadata

So what is IPUMS?

18 / 85

IPUMS is a lot of data

United in consistently
documented metadata

What's the best way to interact
with IPUMS data?

So what is IPUMS?

19 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

20 / 85

What is ipumsr?
R package developed by Greg Freedman Ellis

Released in 2017

Over 90,000 CRAN downloads

Includes functions for

Reading IPUMS data
Exploring and manipulating IPUMS metadata
SOON: Interacting with the IPUMS API

21 / 85

Why use ipumsr?
One package for IPUMS microdata, aggregate data, and geography

22 / 85

One package to rule them allOne package to rule them all

23 / 8523 / 85

Why use ipumsr?
One package for IPUMS microdata, aggregate data, and geography

Specialized functions for viewing and manipulating IPUMS metadata

Bundled how-to guides (vignettes)

Potential to add more features (e.g. API support); let us know what you
want!

File an issue at https://github.com/mnpopcenter/ipumsr/issues
Email ipums+cran@umn.edu

24 / 85

https://github.com/mnpopcenter/ipumsr/issues

Why use ipumsr?
And finally...

It's fast!
Time to read 3 million rows with 13 variables:

Function Time (seconds) With metadata?

data.table::fread() 2.5 No

vroom::vroom() 2.5 No

ipumsr::read_ipums_micro() 3.3 Yes

haven::read_dta() 7.8 Yes

haven::read_sav() 9.4 Yes

readr::read_csv() 9.8 No

25 / 85

Poll: Have you ever used ipumsr before?

26 / 85

Installing ipumsr
install.packages("ipumsr")

Or if you want the development version

www.github.com/mnpopcenter/ipumsr

if (!require(remotes)) install.packages("remotes")
remotes::install_github("mnpopcenter/ipumsr", ref = "api-alpha-dev")

27 / 85

To run the code in this webinar

28 / 85

Install R packages (as needed)

install.packages(ipumsr)

Tidyverse
install.packages("dplyr")
install.packages("ggplot2")
install.packages("stringr")
install.packages("purrr")

HTML tables
install.packages("DT")

gis
install.packages("sf")

29 / 85

Loading packages
library(ipumsr)
library(dplyr)
library(ggplot2)
library(stringr)
library(sf)
library(purrr)

30 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

31 / 85

Downloading your data extract

You must download both the data and DDI codebook

Save both files in the same folder

32 / 85

Downloading your data extract
Optional: "R" link contains code to read in your data with ipumsr

33 / 85

Read in the data
Using functions read_ipums_ddi() and read_ipums_micro()

This also works:

Note: supply the codebook, not the data file, to read_ipums_micro()

ddi <- read_ipums_ddi("usa_00013.xml")

data <- read_ipums_micro(ddi)
#> Use of data from IPUMS-USA is subject to conditions including that
#> cite the data appropriately. Use command `ipums_conditions()` for

data <- read_ipums_micro("usa_00013.xml")
#> Use of data from IPUMS-USA is subject to conditions including that
#> cite the data appropriately. Use command `ipums_conditions()` for

34 / 85

Why do I point to the codebook to read in
the data?

The data �le is the raw ingredients, the codebook is the recipe

35 / 85

The data �le is just raw ingredients
19600100336455000001000027 120001000001000005050
19600100336455000001000027 120002000001000006060
19600100336456000001000027 120001000001000006060
19600100336456000001000027 120002000001000006060
19600100336456000001000027 120003000001000002022
19600100336456000001000027 120004000001000000001
19600100336457000000990027 120001000000990006060
19600100336457000000990027 120002000000990004040
19600100336457000000990027 120003000000990004040
19600100336458000001000027 120001000001000006060

36 / 85

The DDI codebook is the recipe
names(ddi)
#> [1] "file_name" "file_path"
#> [3] "file_type" "ipums_project"
#> [5] "extract_date" "extract_notes"
#> [7] "rectypes" "rectype_idvar"
#> [9] "rectypes_keyvars" "var_info"
#> [11] "conditions" "citation"
#> [13] "file_encoding"

ddi$file_name
#> [1] "usa_00013.dat"

37 / 85

The DDI codebook is the recipe
ddi$var_info
#> # A tibble: 12 x 10
#> var_name var_label var_desc
#> <chr> <chr> <chr>
#> 1 YEAR Census year "YEAR report
#> 2 DATANUM Data set number "DATANUM ide
#> 3 SERIAL Household serial number "SERIAL is a
#> 4 HHWT Household weight "HHWT indica
#> 5 STATEFIP State (FIPS code) "STATEFIP re
#> 6 CONSPUMA Consistent PUMA, 1980-1990-2000 "CONSPUMA id
#> 7 GQ Group quarters status "GQ classifi
#> 8 PHONE Telephone availability "PHONE indic
#> 9 PERNUM Person number in sample unit "PERNUM numb
#> 10 PERWT Person weight "PERWT indic
#> 11 EDUC Educational attainment [general version] "EDUC indica
#> 12 EDUCD Educational attainment [detailed version] "EDUC indica

38 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

39 / 85

What's in my extract again?
Maybe I wrote an informative extract description?

ddi$extract_notes %>% strwrap(60)
#> [1] "User-provided description: Revision of(Revision of(Revision"
#> [2] "of(Revision of(my extract))))"

No such luck 😞

40 / 85

What's in my extract again?
We can print the names of our variables:

names(data)
#> [1] "YEAR" "DATANUM" "SERIAL" "HHWT"
#> [5] "STATEFIP" "CONSPUMA" "GQ" "PHONE"
#> [9] "PERNUM" "PERWT" "EDUC" "EDUCD"

But often variable names aren't self-explanatory.

Let's leverage that attached metadata!

41 / 85

Available metadata
Variable labels and descriptions:

ipums_var_label(ddi, PHONE)
#> [1] "Telephone availability"

ipums_var_desc(ddi, PHONE) %>% strwrap(60)
#> [1] "PHONE indicates whether residents of the housing unit had"
#> [2] "telephone access."

42 / 85

Available metadata
Value labels:

ipums_val_labels(ddi, PHONE)
#> # A tibble: 4 x 2
#> val lbl
#> <dbl> <chr>
#> 1 0 N/A
#> 2 1 No, no phone available
#> 3 2 Yes, phone available
#> 4 8 Suppressed (2012 and 2015 ACS)

43 / 85

An interactive view of metadata
ipums_view(ddi)

44 / 85

Wrangling value labels
IPUMS value labels don't translate perfectly to R factors

Every value in a factor must be labeled

Factor values always count up from 1

ipumsr uses haven::labelled() objects to preserve values and labels,
but these objects can be tricky to work with

ipumsr helper functions allow you to leverage info from values and labels

45 / 85

haven::labelled columns at a glance
data
#> # A tibble: 1,476,443 x 12
#> YEAR DATANUM SERIAL HHWT STATEFIP CONSPUMA
#> <int> <dbl> <dbl> <dbl> <int+lbl> <dbl>
#> 1 1960 1 336455 100 27 [Minnesota] NA 1 [Household
#> 2 1960 1 336455 100 27 [Minnesota] NA 1 [Household
#> 3 1960 1 336456 100 27 [Minnesota] NA 1 [Household
#> 4 1960 1 336456 100 27 [Minnesota] NA 1 [Household
#> 5 1960 1 336456 100 27 [Minnesota] NA 1 [Household
#> 6 1960 1 336456 100 27 [Minnesota] NA 1 [Household
#> 7 1960 1 336457 99 27 [Minnesota] NA 1 [Household
#> 8 1960 1 336457 99 27 [Minnesota] NA 1 [Household
#> 9 1960 1 336457 99 27 [Minnesota] NA 1 [Household
#> 10 1960 1 336458 100 27 [Minnesota] NA 1 [Household
#> # ... with 1,476,433 more rows

46 / 85

Get rid of haven::labelled columns
as_factor(data)
#> # A tibble: 1,476,443 x 12
#> YEAR DATANUM SERIAL HHWT STATEFIP CONSPUMA GQ
#> <int> <dbl> <dbl> <dbl> <fct> <dbl> <fct>
#> 1 1960 1 336455 100 Minnesota NA Households under
#> 2 1960 1 336455 100 Minnesota NA Households under
#> 3 1960 1 336456 100 Minnesota NA Households under
#> 4 1960 1 336456 100 Minnesota NA Households under
#> 5 1960 1 336456 100 Minnesota NA Households under
#> 6 1960 1 336456 100 Minnesota NA Households under
#> 7 1960 1 336457 99 Minnesota NA Households under
#> 8 1960 1 336457 99 Minnesota NA Households under
#> 9 1960 1 336457 99 Minnesota NA Households under
#> 10 1960 1 336458 100 Minnesota NA Households under
#> # ... with 1,476,433 more rows

47 / 85

Get rid of haven::labelled columns
zap_labels(data)
#> # A tibble: 1,476,443 x 12
#> YEAR DATANUM SERIAL HHWT STATEFIP CONSPUMA GQ PHONE PERNUM
#> <int> <dbl> <dbl> <dbl> <int> <dbl> <int> <int> <dbl>
#> 1 1960 1 336455 100 27 NA 1 2 1
#> 2 1960 1 336455 100 27 NA 1 2 2
#> 3 1960 1 336456 100 27 NA 1 2 1
#> 4 1960 1 336456 100 27 NA 1 2 2
#> 5 1960 1 336456 100 27 NA 1 2 3
#> 6 1960 1 336456 100 27 NA 1 2 4
#> 7 1960 1 336457 99 27 NA 1 2 1
#> 8 1960 1 336457 99 27 NA 1 2 2
#> 9 1960 1 336457 99 27 NA 1 2 3
#> 10 1960 1 336458 100 27 NA 1 2 1
#> # ... with 1,476,433 more rows

48 / 85

Using ipumsr label helper functions

49 / 85

lbl_na_if()
lbl_na_if() allows you to set certain values or labels to missing

ipums_val_labels(data$PHONE)
#> # A tibble: 4 x 2
#> val lbl
#> <int> <chr>
#> 1 0 N/A
#> 2 1 No, no phone available
#> 3 2 Yes, phone available
#> 4 8 Suppressed (2012 and 2015 ACS)

50 / 85

lbl_na_if()
data$PHONE2 <- lbl_na_if(data$PHONE, ~.val %in% c(0, 8)) %>%
 as_factor()

. . .

before ([val] label) after count

[0] N/A 41133

[1] No, no phone available No, no phone available 30852

[2] Yes, phone available Yes, phone available 1404458

[8] Suppressed (2012 and 2015 ACS) 0

51 / 85

lbl_na_if()
data$PHONE2 <- lbl_na_if(
 data$PHONE,
 function(.val, .lbl) .val %in% c(0, 8)
) %>%
 as_factor()

. . .

before ([val] label) after count

[0] N/A 41133

[1] No, no phone available No, no phone available 30852

[2] Yes, phone available Yes, phone available 1404458

[8] Suppressed (2012 and 2015 ACS) 0

52 / 85

lbl_na_if()
Works with both values (.val) and labels (.lbl)

drop_labels <- c("N/A", "Suppressed (2012 and 2015 ACS)")

data$PHONE3 <- lbl_na_if(data$PHONE, ~.lbl %in% drop_labels) %>%
 as_factor()

53 / 85

lbl_collapse()
lbl_collapse() allows you to take advantage of the hierarchical
structure of value labels

ipums_val_labels(data$EDUCD)
#> # A tibble: 44 x 2
#> val lbl
#> <int> <chr>
#> 1 0 N/A or no schooling
#> 2 1 N/A
#> 3 2 No schooling completed
#> 4 10 Nursery school to grade 4
#> 5 11 Nursery school, preschool
#> 6 12 Kindergarten
#> 7 13 Grade 1, 2, 3, or 4
#> 8 14 Grade 1
#> 9 15 Grade 2
#> 10 16 Grade 3
#> # ... with 34 more rows

54 / 85

lbl_collapse()
Maybe this is too much detail, so we want to collapse the last digit

data$EDUCD2 <- lbl_collapse(data$EDUCD, ~.val %/% 10) %>%
 as_factor(ordered = TRUE)

. . .

before ([val] label) after count

[0] N/A or no schooling N/A or no schooling 11811

[1] N/A N/A or no schooling 50098

[2] No schooling completed N/A or no schooling 50114

[10] Nursery school to grade 4
Nursery school to
grade 4

40324

55 / 85

Still too detailed for a graph
data$EDUCD %>%
 lbl_collapse(~.val %/% 10) %>%
 ipums_val_labels()
#> # A tibble: 13 x 2
#> val lbl
#> <dbl> <chr>
#> 1 0 N/A or no schooling
#> 2 1 Nursery school to grade 4
#> 3 2 Grade 5, 6, 7, or 8
#> 4 3 Grade 9
#> 5 4 Grade 10
#> 6 5 Grade 11
#> 7 6 Grade 12
#> 8 7 1 year of college
#> 9 8 2 years of college
#> 10 9 3 years of college
#> 11 10 4 years of college
#> 12 11 5+ years of college
#> 13 99 Missing

56 / 85

lbl_relabel()
Maybe the education variable is still too specific.

college_regex <- "^[123] year(s)? of college$"
data$EDUCD3 <- data$EDUCD %>%
 lbl_collapse(~.val %/% 10) %>%
 lbl_relabel(
 lbl(2, "Less than High School") ~.val > 0 & .val < 6,
 lbl(3, "High school") ~.lbl == "Grade 12",
 lbl(4, "Some college") ~str_detect(.lbl, college_regex),
 lbl(5, "College or more") ~.val %in% c(10, 11)
) %>%
 as_factor()

57 / 85

lbl_relabel()
Maybe the education variable is still too specific.

college_regex <- "^[123] year(s)? of college$"
data$EDUCD3 <- data$EDUCD %>%
 lbl_collapse(~.val %/% 10) %>%
 lbl_relabel(
 lbl(2, "Less than High School") ~.val > 0 & .val < 6,
 lbl(3, "High school") ~.lbl == "Grade 12",
 lbl(4, "Some college") ~str_detect(.lbl, college_regex),
 lbl(5, "College or more") ~.val %in% c(10, 11)
) %>%
 as_factor()

58 / 85

lbl_relabel()
Maybe the education variable is still too specific.

college_regex <- "^[123] year(s)? of college$"
data$EDUCD3 <- data$EDUCD %>%
 lbl_collapse(~.val %/% 10) %>%
 lbl_relabel(
 lbl(2, "Less than High School") ~.val > 0 & .val < 6,
 lbl(3, "High school") ~.lbl == "Grade 12",
 lbl(4, "Some college") ~str_detect(.lbl, college_regex),
 lbl(5, "College or more") ~.val %in% c(10, 11)
) %>%
 as_factor()

59 / 85

lbl_relabel()
levels(data$EDUCD3)
#> [1] "N/A or no schooling"
#> [2] "Less than High School"
#> [3] "High school"
#> [4] "Some college"
#> [5] "College or more"
#> [6] "Missing"

60 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

61 / 85

Phone availability
Now that they're factors, ready for use as regular R data

graph_data <- data %>%
 group_by(YEAR) %>%
 summarize(
 `% with phone` = weighted.mean(
 PHONE2 == "Yes, phone available", PERWT, na.rm = TRUE
),
 .groups = "drop"
)

ggplot(graph_data, aes(x = YEAR, y = `% with phone`)) +
 geom_point() +
 geom_line() +
 labs(
 title = "Percent of Minnesota with phone line",
 subtitle = paste0("Data source: ", ddi$ipums_project),
 caption = paste(
 strwrap(ipums_var_desc(ddi, PHONE), 90),
 collapse = "\n"
)
)

62 / 85

Phone availability

63 / 85

Interpretation

64 / 85

Phone availability by education

65 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

66 / 85

Getting geographic data
For IPUMS USA (and several other projects), we provide geographic
boundaries as well. For many areas, this includes harmonizing boundary
changes over time.

Our extract includes the variable CONSPUMA, for "Consistent Public Use
Microdata Areas"

Note: CONSPUMA units are large

For finer geographic detail, check out IPUMS NHGIS

67 / 85

Getting geographic data

68 / 85

Loading shape data
ipumsr provides support for both sf and sp data; we'll use sf here

Load with the ipums_read_sf() function (mostly just a wrapper around
sf::read_sf())

shape_data <- read_ipums_sf("shape/")
#> options: ENCODING=latin1
#> Reading layer `ipums_conspuma' from data source
#> `C:\Users\derek\Documents\ipumsr-webinar\shape\ipums_conspuma.sh
#> using driver `ESRI Shapefile'
#> Simple feature collection with 543 features and 3 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -7115713 ymin: -1337508 xmax: 2258225 ymax: 4
#> Projected CRS: USA_Contiguous_Albers_Equal_Area_Conic

69 / 85

Loading shape data
as_tibble(shape_data)
#> # A tibble: 543 x 4
#> CONSPUMA STATEFIP State
#> <dbl> <chr> <chr>
#> 1 540 02 Alaska (((-3043869 3470021, -3043834 3469
#> 2 541 02 Alaska (((-2291901 2327688, -2290772 2327
#> 3 542 15 Hawaii (((-6021813 59835.48, -6021818 598
#> 4 491 51 Virginia (((1720696 104240.2, 1720648 10417
#> 5 492 51 Virginia (((1745400 116778.3, 1745641 11674
#> 6 493 51 Virginia (((1728178 119921.5, 1728243 11989
#> 7 494 51 Virginia (((1717473 129180.9, 1717834 12895
#> 8 495 53 Washington (((-1584859 1462223, -1583276 1461
#> 9 496 53 Washington (((-2031282 1366306, -2031348 1366
#> 10 497 53 Washington (((-1970094 1408574, -1970093 1408
#> # ... with 533 more rows

70 / 85

Joining shape data
ipumsr has helpers for merging data that work with both sf and sp
structures

conspuma_data <- data %>%
 group_by(CONSPUMA, YEAR) %>%
 summarize(
 `% with phone` = weighted.mean(
 PHONE2 == "Yes, phone available", PERWT, na.rm = TRUE
),
 .groups = "drop"
)

conspuma_data <- ipums_shape_inner_join(
 conspuma_data,
 shape_data,
 by = "CONSPUMA"
)
#> Some observations were lost in the join (533 observations in the s
#> 11 obervation in data). See `join_failures(...)` for more details.

71 / 85

Plotting shape data
Since the addition of geom_sf(), ggplot2 can plot sf data:

graph_data <- conspuma_data %>%
 filter(YEAR %in% c(1980, 1990, 2000, 2010))

ggplot(graph_data, aes(fill = `% with phone`)) +
 facet_wrap(~YEAR) +
 geom_sf()

72 / 85

Plotting shape data

73 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic data

7. Preview of IPUMS API functionality

8. Q & A

74 / 85

API Timeline
Currently in internal testing

Beta testing before the end of 2021

IPUMS USA public launch early 2022

75 / 85

What can I do with the API?
Define and submit extract requests

Check extract status or "wait" for an extract to finish

Download completed extracts

Get info on past extracts

Share extract definitions

76 / 85

What can't I do with the API?
Bypass the extract system entirely

Explore what data are available

Use all features of the extract system (at least not right away)

77 / 85

Pipe-friendly example
my_extract <- define_extract(
 "usa",
 "Occupation by sex and age",
 c("us2017a", "us2018a"),
 c("SEX", "AGE", "IND", "OCC")
)

Extract definition to data in one piped expression!

data <- my_extract %>%
 submit_extract() %>%
 wait_for_extract() %>%
 download_extract() %>%
 read_ipums_micro()

78 / 85

Pipe-friendly example
my_extract <- define_extract(
 "usa",
 "Occupation by sex and age",
 c("us2017a", "us2018a"),
 c("SEX", "AGE", "IND", "OCC")
)

Extract definition to data in one piped expression!

data <- my_extract |>
 submit_extract() |>
 wait_for_extract() |>
 download_extract() |>
 read_ipums_micro()

79 / 85

Pipe-friendly example
my_extract %>%
 submit_extract() %>%
 wait_for_extract() %>%
 download_extract()

#> Successfully submitted IPUMS USA extract number 58
#> Checking extract status...
#> Waiting 10 seconds...
#> Checking extract status...
#> Waiting 20 seconds...
#> Checking extract status...
#> Waiting 40 seconds...
#> Checking extract status...
#> Waiting 80 seconds...
#> Checking extract status...
#> Extract ready to download
#> DDI codebook file saved to usa_00058.xml
#> Data file saved to usa_00058.dat.gz

80 / 85

Revise and resubmit
Get definition of my most recent extract:

old_extract <- get_recent_extracts_info_list("usa", 1)[[1]]

Or if we know the number of the extract:

old_extract <- get_extract_info("usa:33")

81 / 85

Revise and resubmit
Then add a variable and resubmit:

old_extract %>%
 revise_extract(vars_to_add = "EDUC") %>%
 submit_extract()

82 / 85

Share your extract de�nition
save_extract_as_json(my_extract, "my_extract.json")

Another user can read that definition back in with:

cloned_extract <- define_extract_from_json("my_extract.json", "usa")

83 / 85

Overview
1. What is IPUMS?

2. What is ipumsr, and why use it?

3. Reading data into R

4. Exploring and manipulating metadata

5. Brief analysis example

6. Working with IPUMS geographic

7. Preview of IPUMS API functionality

8. Q & A

84 / 85

Resources
Email us: ipums+cran@umn.edu

Post on the IPUMS User Forum: https://forum.ipums.org/

Create an issue on GitHub: https://github.com/mnpopcenter/ipumsr

This presentation: https://github.com/dtburk/ipumsr-webinar

ipumsr website, with vignettes: http://tech.popdata.org/ipumsr/index.html

IPUMS tutorials page: https://www.ipums.org/support/tutorials

IPUMS NHGIS API documentation:
https://developer.ipums.org/docs/workflows/

Geocomputation with R book: https://geocompr.robinlovelace.net/

85 / 85

https://forum.ipums.org/
https://github.com/mnpopcenter/ipumsr
https://github.com/dtburk/ipumsr-webinar
http://tech.popdata.org/ipumsr/index.html
https://www.ipums.org/support/tutorials
https://developer.ipums.org/docs/workflows/
https://geocompr.robinlovelace.net/

