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Abstract 

To distinguish urban and rural populations in the U.S., a common practice is to use one of the official 
federal classifications of metropolitan/non-metropolitan (i.e., metro/nonmetro) or urban/rural areas. These 
classifications are not identified in public use census microdata, which makes it difficult to investigate 
relationships between the urban/rural status of individuals and their demographic characteristics, socio-
economic status, and living arrangements. The standard binary classifications are also coarse, and they 
each index a distinct dimension of settlement patterns, so it can be misleading to use only one 
classification to generalize about urban-rural disparities. To address these limitations, we compute two 
continuous indices for public use microdata—average tract density and average metro/micro-area 
population—using population-weighted geometric means. We show how these indices correspond to two 
key dimensions of settlement patterns, and we demonstrate their utility through an examination of 
disparities in poverty throughout the rural-urban universe. Poverty rates vary across settlement patterns in 
nonlinear ways: rates are lowest in moderately-dense parts of major metro areas, and rates are higher in 
both low- and high-density areas, as well as in smaller commuting systems. Using the two indices also 
reveals that correlations between poverty and demographic characteristics vary considerably across 
different settlement types. Both indices are now available for recent census microdata via IPUMS USA 
(https://usa.ipums.org). 
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Introduction 

Public Use Microdata Sample (PUMS) files are one of the U.S. Census Bureau’s most valuable data 

products for social science and policy analysis, providing detailed questionnaire responses from the 

decennial censuses and the American Community Survey (ACS) for a large sample of the U.S. 

population. Using PUMS data, researchers can generate custom cross-tabulations with maximum 

flexibility and investigate relationships among all reported characteristics for individual respondents and 

their households. One limitation of PUMS files is that, in order to protect privacy, the Census Bureau 

restricts the detail of reported geographic information. The only sub-state geographic units identified are 

Public Use Microdata Areas (PUMAs), which are custom-designed agglomerations of other standard 

units (census tracts, counties, etc.), each required to have at least 100,000 residents. This restriction makes 

it impossible to identify smaller communities and neighborhoods in PUMS data, and identifying larger 

regions is also often complicated by mismatches between PUMAs and other geographic units. 

IPUMS USA (https://usa.ipums.org), a website that disseminates harmonized U.S. census 

microdata, has developed numerous tools and resources to facilitate microdata access and use. To expand 

on the limited geographic information provided in PUMS files, IPUMS USA supplies supplemental 

variables that identify several standard geographic units other than PUMAs. IPUMS can only identify 

units that correspond well to a set of PUMAs, but this approach has still enabled the identification of 

hundreds of counties, cities, and metropolitan areas for most decennial and ACS microdata samples. 

In this paper, we introduce two PUMA-based indices that IPUMS USA recently added to its 

collection of supplemental variables in order to facilitate analysis of demographic variation across 

different levels of urbanization. The two indices—average tract population density and average 

metro/micro-area population—correspond to two distinct dimensions of settlement patterns: 

“concentration” (the local intensity of settlement) and “size” (the total population of the commuting 

system). For analysts seeking to distinguish rural and urban populations in microdata, IPUMS USA has 

also long provided a categorical variable named “METRO,” which identifies metropolitan status and 

central/principal city status based on PUMA information. We demonstrate here how the new indices offer 
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valuable advantages relative to METRO. Crucially, because they are continuous and represent two 

distinct dimensions, the new indices distinguish a much broader range of variation across the rural-urban 

universe of settlement patterns. 

In succeeding sections, we first discuss the limitations of standard metropolitan and urban 

classifications and the relative value of multi-dimensional, continuous indices. We then provide the exact 

definitions of the new IPUMS USA indices and discuss how they correspond conceptually to two 

important dimensions of settlement patterns. Finally, we demonstrate the utility of the new indices in an 

examination of poverty across the rural-urban spectrum. We find that poverty rates are lowest in 

moderately dense parts of major metro areas, and they are high in both low-density and high-density 

areas, as well as in smaller commuting systems. We also find that correlations between poverty and 

demographic characteristics vary considerably across settlement types. More generally, our findings 

demonstrate the value of modeling urban/rural status as a continuously varying, multi-dimensional 

phenomenon, an approach that is directly facilitated by the new indices from IPUMS USA. 

Limitations of Standard Classifications 

To distinguish rural and urban populations, analysts commonly use one of two classification systems 

defined by federal agencies: the core-based statistical area (CBSA) definitions of the Office of 

Management and Budget (OMB), which delineate metropolitan and micropolitan statistical areas (i.e., 

metro and micro areas), or the official urban/rural classification of the Census Bureau.1 The Bureau’s 

criteria and guidelines for PUMA delineations2 do not require any agreement with CBSAs or urban/rural 

                                                   
1 The Census Bureau’s urban/rural classifications have evolved over time (Ratcliffe 2015), but since 2000, the 
general procedure is to define “urban areas” as groups of relatively dense neighboring (or nearby) blocks with 
combined populations of at least 2,500 each (Ratcliffe et al. 2016). The Census then classifies all residents of urban 
areas as “urban” and all other population as “rural.” OMB metropolitan area definitions have also evolved, but since 
2003, the OMB has delineated “metropolitan statistical areas” as one of two types of CBSAs along with 
“micropolitan statistical areas.” Each CBSA consists of a set of central counties, where a substantial population 
resides in the same core urban area(s), combined with any outlying counties, where a substantial proportion of 
workers commute to or from the central counties. To qualify as a metropolitan area, a CBSA must contain an urban 
area with at least 50,000 residents, while the largest urban area in a micropolitan area has between 10,000 and 
50,000 residents (https://www.census.gov/programs-surveys/metro-micro/about.html). 
2 See https://www.census.gov/programs-surveys/geography/guidance/geo-areas/pumas.html. 
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delineations, so PUMAs do not consistently align with either of these systems (Figure 1). To distinguish 

suburban populations, analysts sometimes also use the OMB’s central or principal city definitions,3 

treating as “suburban” the population living in metro areas but outside of central/principal cities (e.g., 

Mattingly and Bean 2010), but PUMAs need not align with city boundaries either. 

As illustrated in Figure 1, PUMAs occasionally align with CBSAs but almost never with urban 

areas. The boundaries of urban areas are complex and idiosyncratic, and urban areas can also have 

relatively small populations (down to 2,500), so outside the cores of major urban areas, nearly all PUMAs 

encompass a mix of urban and rural areas. CBSA boundaries, on the other hand, always follow county 

boundaries, which often also form PUMA boundaries. Metro areas generally have populations larger than 

100,000, enough for a single metro area to comprise one or more whole PUMAs. Likewise, central and 

principal cities are often large enough to comprise whole PUMAs. 

 

 
Figure 1. 2010 PUMAs, 2010 urban areas and 2013 CBSAs (metropolitan and micropolitan areas) in a 
section of south-central Texas. 

                                                   
3 Since 2003, the OMB has designated certain places within each CBSA as “principal cities,” typically the largest 
incorporated place within a CBSA along with other places of similar size. Prior to 2003, the OMB instead used the 
term “central city” to denote a similar concept. 



Across the Rural-Urban Universe 

5 
 

  
Figure 2. IPUMS-USA METRO classes for 2010 PUMAs in a section of south-central Texas. 

The numerous correspondences between PUMAs and the OMB delineations make it possible to 

identify the exact metro/nonmetro status and occasionally also the central/principal city status for most 

PUMS records. Nevertheless, identifying a status for all PUMS records, as IPUMS USA does through its 

METRO variable, requires special handling for the many PUMAs with populations both within and 

outside of metro areas, or both within and outside of central/principal cities. In such cases, IPUMS USA 

assigns a “mixed” status, resulting in 5 distinct METRO classes, including 3 “pure” and 2 “mixed” 

classes (Figure 2). The Economic Research Service (ERS) of the U.S. Department of Agriculture has 

produced a similar classification that identifies all PUMAs as either metro or nonmetro, allocating each 

“mixed” PUMA to one of these two classes based on where the majority of PUMA residents live (U.S. 

Department of Agriculture 2019b). Translating the standard OMB classes into microdata, using the 

approach of either IPUMS USA or the ERS, offers the benefits of familiarity and conceptual consistency 

with many other applications that use the OMB definitions. This framework, however, unavoidably yields 

inexact class identifications because of the many discrepancies between PUMAs and OMB delineations. 

An important related problem is that both the PUMA and OMB delineations change over time, as 

does the correspondence between them, which impairs studies of demographic change by metro status. 
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For example, when the Census changed the PUMAs identified in ACS PUMS files from the 2000 to 2010 

definitions, IPUMS USA also changed which metropolitan definitions it used as the basis of the METRO 

variable, switching from the 1999 to the 2013 OMB definitions. In effect, the portion of population 

having a mixed metro/nonmetro status grew from 7% for the 2011 ACS (using 2000 PUMAs) to 12% for 

the 2012 ACS (using 2010 PUMAs), and the portion with a mixed central/principal city status grew from 

30% to 36%. These shifts are much larger than typical annual changes, indicating that they are mainly 

artifacts of definition changes. 

Even if the correspondence between PUMAs and OMB delineations were exact and persistent, 

there remain two major conceptual problems for any analyses that rely exclusively on the OMB 

classifications. First, subdividing the full range of U.S. settlement patterns into only a few classes is 

imprecise, potentially masking important variations within each class and separating similar locations into 

distinct classes (Waldorf 2006). For example, the largest U.S. metro areas have a hundred times more 

residents than the smallest, and socio-economic conditions may vary enormously across this spectrum. A 

single “metro” class nevertheless groups all these areas together. 

A second limitation of the metro/nonmetro classification—especially when analysts use it alone 

to distinguish “urban” and “rural” populations—is that it indexes only one dimension of settlement 

patterns: the size of the commuting system. There are other important dimensions of difference between 

urban and rural places, such as population density and remoteness, which are correlated with but distinct 

from metro status (Coombes and Raybould 2001, Isserman 2005, Wang et al. 2011). Large portions of 

metro areas have rural densities, and some metro areas are relatively remote, etc. A phenomenon of 

interest could be associated with each of these dimensions in different ways, but that is impossible to 

determine using only the standard OMB classes. 

The Census Bureau’s urban/rural definitions emphasize a second dimension of settlement 

patterns, subdividing the country based mainly on local population densities. (The Census also uses 

population size to distinguish urban areas, but the threshold of 2,500 is much lower than the core size of 

50,000 required for metro areas.) These two standard ways of distinguishing “urban” and “rural” can lead 
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to very different conclusions. For example, using 

the OMB classes, nonmetro areas had higher 

poverty rates than metro areas in 2017, but using 

the official urban/rural classification, the 

relationship is reversed; the rural areas had the 

lowest poverty rates overall (Figure 3). Clearly, 

drawing robust conclusions about variations 

across the rural-urban spectrum—and making 

sense of discrepancies like those depicted in 

Figure 3—demands a more sophisticated 

conceptual framework than is supported by either of these standard classifications alone. 

Toward this end, the ERS has produced several alternative classifications (U.S. Department of 

Agriculture 2019b), including the Rural-Urban Continuum Codes (distinguishing 9 classes of counties), 

Urban-Influence Codes (12 classes of counties), Rural-Urban Continuum Areas (10 primary and 21 

secondary classes of census tracts), and Frontier and Remote Area Codes (4 levels of remoteness among 

ZIP Code areas). These schemes offer more granularity than the standard OMB and Census 

classifications, and they distinguish more than one dimension of variation. However, in accord with 

ERS’s focus on agricultural economics, their classifications mainly differentiate types of rural areas and 

only minimally distinguish higher levels of urbanization. Also, aside from ERS’s metro/nonmetro 

classification of PUMAs, none of their classifications are PUMA-based, so they are not directly 

applicable for public-use microdata. 

Two PUMA-Level Indices 

When developing new rural-urban indices for IPUMS USA, we have sought out options that not only 

could be computed at the PUMA level consistently across time but that also varied continuously across a 

full spectrum of rural and urban settlement types. A secondary consideration was to select measures that 

Figure 3. Poverty rates using standard 
metropolitan/non-metropolitan and 
urban/rural classifications. 2017 American 
Community Survey 1-Year Summary File, 
retrieved from IPUMS NHGIS (Manson et al. 
2018). 
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are relatively easy to compute and to extend forward when integrating new PUMS files into IPUMS USA. 

The two newly added indices satisfy these aims. 

Two-Dimensional Conceptual Framework 

Conceptually, the two new indices correspond to two basic dimensions of settlement patterns: 

concentration, ranging from sparse to dense, and size, ranging from small to large (Figure 4). In common 

usage, the terms “rural” and “urban” indicate variation in both dimensions: rural places are more sparsely 

settled and have smaller populations (bottom-left quadrant in Figure 4); urban places are more densely 

settled and have larger populations (upper-right quadrant). But places may be distinctly “rural” or “urban” 

along one dimension and not the other. An isolated town center (left-hand side) may be somewhat urban 

in its concentration level but decidedly rural in population size. Conversely, exurban large-lot 

developments (lower-right quadrant) may have rural levels of concentration but urban levels of access to 

amenities and services due to the large population of a nearby city. We expect the upper-left corner to be 

empty because the highest levels of concentration can occur only where there are ample populations. 

Our choices for which two dimensions to emphasize and how to measure them are inspired by the 

two standard federal classification 

systems. To produce the official 

urban/rural classifications, the 

Census Bureau relies principally 

on local residential population 

density (Ratcliffe et al. 2016). 

This corresponds to classification 

along the concentration 

dimension, as indicated by the 

horizontal dividing line in Figure 

4. To delineate CBSAs, the OMB 
Figure 4. Conceptual model of two continuous dimensions of 
settlement patterns. 
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guidelines distinguish metro and micro areas based on the population of the urban core of each 

commuting system. This in turn corresponds (roughly) to classification along the size dimension, as 

indicated by the vertical dividing line in Figure 4. 

The model also accords with other previously developed frameworks. Isserman (2005) and Wang 

et al. (2011) both argue—and demonstrate through case studies of poverty rates—that the two standard 

classifications can and should be treated as distinct, complementary indicators of urbanicity and rurality, 

though neither of these research efforts developed continuous indices. Coombes and Raybould (2001) 

suggest continuous measures for three dimensions of settlement patterns: settlement size (from hamlet to 

metropolitan), concentration (from sparse to dense), and accessibility (from remote to central). Our model 

re-uses their concentration dimension directly, and our second dimension of size corresponds with both 

the settlement size dimension and, to a lesser extent, the accessibility dimension.4 

Index of Concentration 

The name of the new IPUMS USA variable that indexes concentration is DENSITY, and the specific 

measure it reports is the population-weighted geometric mean of census tract population densities in each 

PUMA. In the initial release, DENSITY is available for 2000 census samples (using 2000 tract densities) 

and for the 2010 census and ACS samples (using 2010 tract densities). 

We choose to use a population-weighted average density rather than the density of the whole 

PUMA because the latter (the PUMA’s population divided by its area) is often a weak indicator of the 

local densities where PUMA residents live. Many PUMAs span across both densely and sparsely settled 

areas, as demonstrated by the varying densities of tracts within PUMAs (Figure 5a). The density of each 

whole PUMA (Figure 5b) is effectively an “area-weighted average” of these varying densities (Craig 

1984), representing the typical density across all subdivisions of the PUMA rather than among the 

                                                   
4 In Coombes and Raybould’s model, settlement size is associated with the size of an urban area (a concentrated 
settlement) and accessibility is associated with proximity to large settlements. In our model, “size” is associated with 
the size of an entire commuting system, encompassing both urban areas and lower-density areas that are 
“accessible” to the urban core. 
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residents of the PUMA. Because PUMA residents are (by definition) more concentrated in the denser 

parts of a PUMA, the average of their local densities is generally higher (and cannot be lower) than the 

entire PUMA’s density. 

To summarize local concentrations throughout a large area, a better strategy is to compute 

densities in smaller “local” units, such as census tracts, and then compute the average of these densities, 

weighted by the local units’ populations, so each resident’s local density is given equal weight. The right-

hand panels of Figure 5 illustrate the outcomes of measuring the population-weighted average of tract 

densities using the arithmetic mean (5c) and the geometric mean (5d). Following the notation of Craig 

(1984), the population-weighted arithmetic mean density is computed as: 

 !"# = ∑&'('
∑&'

 (1) 
 
where )* and !* are the population and density of subdivision + (in our case, a tract). The population-

weighted geometric mean is computed as:  

 !,# = ∏!*.' (2) 
 
where /* is the proportion of the containing unit’s (the PUMA’s) population living in subdivision +. It can 

be helpful to think of the geometric mean density as measuring the average density on a logarithmic 

scale, which recasts Equation 2 into this form: 

 !,# = exp 3∑&' 456 ('∑&'
7 (3) 

 
In practice, our computations deviate somewhat from these equations where a PUMA boundary 

subdivides a tract.5 In such cases, we use the whole tract's density, but we limit the population weight to 

the portion that also resides in the PUMA (determining this portion by summing the populations of the 

census blocks with centroids in each PUMA). 

 

                                                   
5 Although 2010 census tracts nest exactly within 2010 PUMAs, not all 2000 census tracts nest within 2000 
PUMAs. Also, the 2005-2011 ACS PUMS files use 2000 PUMA definitions, but DENSITY summarizes 2010 tract 
densities for those samples, so it is necessary to associate 2010 tracts with the 2000 PUMAs for those samples. 
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Figure 5. Four measures of 2010 population density within PUMAs in a section of south-central Texas.
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Some prior applications of population-weighted average tract densities have used arithmetic 

means (e.g., Wilson et al. 2012, Kolko 2016), but we agree with others (Craig 1984, Dorling and Atkins 

1995) that a geometric mean is more suitable. Densities generally have a log-normal distribution, heavily 

concentrated at the lower end of the distribution with a long positive tail. For such distributions, the 

geometric mean is appropriately less sensitive to large outliers, more sensitive to variations among small 

values, and typically closer to the median than is the arithmetic mean. In practical terms, a logarithmic 

scaling makes sense because a difference between densities of 10 and 100 is about as significant for the 

character of a place as any other factor-of-10 difference (e.g., 1,000 and 10,000), and it is clearly more 

significant than an equal absolute difference of 90 at high densities (e.g., 10,010 and 10,100). 

Figure 6 illustrates how four PUMA-level density measures relate to the distribution of tract 

densities in the PUMAs labeled on Figure 5. The first PUMA, 04503, is roughly coincident with The 

Woodlands, a suburb of Houston. In this case, there is relatively little variation in densities among the 

tracts in the PUMA, so all four measures (the PUMA density, the population-weighted arithmetic mean, 

the population-weighted geometric mean, and the population-weighted median) are close to each other on 

both a linear and log scale, ranging only from 2,061 to 2,290 persons per square mile. 

In PUMA 06100, which encompasses lower-density exurbs, small cities, and rangeland southwest 

of San Antonio, the tract densities vary less than PUMA 04503’s on a linear scale but more than 04503’s 

on a log scale. PUMA 06100’s four density measures therefore bunch closely together on a linear scale 

but differ substantially on a log scale. As expected for a log-normal distribution, the median (51) and the 

geometric mean (48) are similar on either scale, but the arithmetic mean (84) is 65% greater than the 

median, and all three population-weighted densities are well above the whole PUMA’s density (29). 

In PUMA 06200, the tract densities have a relatively wide distribution on either scale, and on the 

log scale, the distribution is clearly bimodal, split between a set of large, sparse tracts and a set of small, 

dense tracts. The whole PUMA’s density (12) lies within the lower cluster of tract densities, which is a 

good indication of the large expanses of sparsely populated rangeland in the PUMA, but it poorly 

represents the much higher local densities of most PUMA residents. The arithmetic mean (1,436) and  
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Figure 6. Distributions of 2010 census tract population densities in four Texas PUMAs, plotted on a 
linear scale and logarithmic scale, along with four PUMA-level density measures. 

median (953) are both much higher, lying in the upper cluster of tract densities, but this in turn poorly 

represents the sparse local densities of many PUMA residents. The geometric mean (194) is located 

between the two modes, suitably splitting the difference. (Of course, no single statistic can represent well 

the “typical” value of a bimodal distribution, but if a single statistic must be selected, something that lies 

between the two modal clusters seems most appropriate.) 

The last of the four example PUMAs, 06302, has the widest distribution of tract densities. While 

the PUMA’s population is concentrated in dense tracts around Laredo, most of the PUMA’s area lies in 

three very sparse outlying tracts. This results in a PUMA density (35) that is much lower than the median 

(1,285) and geometric mean (1,245). At the other end, a few tract densities that are exceptionally high on 

a linear scale (but not on a log scale) result in an arithmetic mean (2,945) that is more than double the 

median and geometric mean. 

These four example PUMAs indicate well the variety of density distributions across all PUMAs, 

and in each example, we find the population-weighted geometric mean of tract densities to be as good as 
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or better than the other density measures as a general index of concentration. There are still more 

measures that could be considered, and there is one issue in particular that is of concern: a census tract is 

only one arbitrary approximation of a person’s local context (Fowler et al. 2019), and averages of tract 

densities are subject to the Modifiable Area Unit Problem, or MAUP (Openshaw and Taylor 1981). For 

example, two PUMAs with identical population distributions could have very different mean tract 

densities depending on how the tract boundaries are drawn. One measure that would be less sensitive to 

the MAUP would be an inverse-distance-weighted average of block-level densities in a moving window 

around each census block. This is similar to the approach that Coombes and Raybould (2001) propose for 

an index of concentration. We have opted to rely on tract densities (for now) because it simplifies the 

computation and description of the index, because measures of population-weighted density are often 

based on tracts, and because we suspect its liabilities relative to a more robust measure are not important 

for most applications. 

Index of Size 

For an index of size, we use the population-weighted geometric mean of the populations of CBSAs (metro 

and micro areas) in each PUMA. The general aim is to summarize the typical population size of the 

commuting systems where PUMA residents live. Where a PUMA lies entirely within a single metro area, 

as is the case for 78% of 2010 PUMAs, this measure simply equates to the metro area's population. 

Elsewhere, the measure summarizes the sizes of all CBSAs where PUMA residents live. For the 

“noncore” counties located outside of any CBSA, we use the county’s population as an approximation of 

the commuting system size.6 

We refer to this index as METPOP, and currently, IPUMS USA provides two versions of the 

index through two variables: METPOP10 summarizes the 2010 populations of 2013 CBSAs and noncore 

counties, and METPOP00 summarizes the 2000 populations of 2003 CBSAs and noncore counties. 

                                                   
6 For Virginia “independent cities” that lie outside of CBSAs, we combine the populations of the independent cities 
with the populations of their neighboring counties. 
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Figure 7 illustrates how 2010 PUMAs correspond to the CBSA and county populations that METPOP10 

summarizes, and Figure 8 illustrates METPOP10 values. 

 

 
Figure 7. 2010 PUMAs, 2010 urban areas and 2013 CBSAs (metropolitan and micropolitan areas) in a 
section of south-central Texas. 

 
Figure 8. METPOP10 values in a section of south-central Texas. 
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The formula we use to compute the METPOP index mirrors the DENSITY formula (Equation 3): 

 !"#$ = exp )
∑+,- ./0 +,

∑+,-
1 (4) 

 
where !"#$ is the population-weighted geometric mean of the populations of CBSAs and noncore 

counties in PUMA 2, !3 is the population of CBSA or noncore county 4, and !3$ is the population in the 

area of intersection between 4 and 2. We again use a geometric mean because commuting system 

populations, like tract densities, have a roughly log-normal distribution, and relative differences in 

populations are more important than absolute differences. For example, a difference between populations 

of 100,000 and 500,000 is about as significant for the character of a commuting system as any other 

factor-of-5 difference (e.g., 1 million and 5 million), and it is clearly more significant than an equal 

absolute difference of 400,000 in large commuting systems (e.g., 10.1 million and 10.5 million). 

Like the DENSITY index, METPOP may also be impaired by an inexact spatial basis. The 

extents of “true” commuting systems need not correspond well with counties, and this is a limitation not 

only where METPOP is based on noncore counties but even where it is based on CBSAs. For example, 

because of the great extents of its component counties, the Riverside–San Bernardino–Ontario CBSA in 

California includes the small city of Needles, a 220-mile drive from the CBSA’s largest city, Riverside. 

The PUMA that contains Needles is comprised mainly of desert, and the fraction of its residents who 

commute to the CBSA’s urban core is likely small, but the PUMA nevertheless has a high METPOP 

value. A more effective index of size might delineate commuting systems based on tracts rather than 

counties, or it might use ERS commuting zones (U.S. Department of Agriculture 2019a, Fowler et al. 

2018), a system which allocates every county to a zone, eliminating the problem of “noncore” counties. 

Alternatively, as with the index of concentration, the most effective approach may be to use a moving 

window, but instead of using a “local” moving-window average of densities, the index of size would use a 

larger “regional” moving-window summing populations within a typical commuting distance. We leave 

these possibilities for future research. 
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Pairing the Indices 

Figure 9 illustrates the two-dimensional spread of average tract densities (DENSITY) and average CBSA 

populations (METPOP10) for all 2010 PUMAs. The point colors indicate the metro/nonmetro class of 

each PUMA. The overall distribution mirrors closely the conceptual model in Figure 4: the upper right 

contains PUMAs with high densities in large metro areas; the lower right contains PUMAs with low 

densities in large metro areas; the lower left contains PUMAs with low densities and outside (or mostly 

outside) of any CBSA; and as expected, the upper left is empty, indicating that PUMAs with high average 

densities occur only in or around medium-to-large CBSAs. 

The colors in Figure 9 indicate that most PUMAs that lie entirely within metro areas have 

relatively high average densities, but some have low average densities. Such low-density metro PUMAs  

 
Figure 9. Relationships among three urbanization indices for 2010 PUMAs. Labels identify the four 
Texas example PUMAs. 
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may or may not fit our expectations for “rural” areas. They may or may not share characteristics with 

other low-density PUMAs. Similarly, the nonmetro and mixed PUMAs with moderately high densities 

may have more in common with metro PUMAs at similar densities than with nonmetro and mixed 

PUMAs at lower densities. We believe that this two-dimensional framework offers great potential as a 

means to investigate such possibilities and to determine whether “concentration” or “size” are important 

factors, separately or together, in any study of urban-rural discrepancies. Because the indices are 

continuous measures, the framework also makes it possible to distinguish fine gradations of variation and 

to identify inflection points across all densities or across all levels of the urban hierarchy. 

Illustrative Results 

To demonstrate the utility of the two indices, we analyze how poverty rates vary across settlement types 

in the U.S. Past analyses of “rural” poverty have often used the “metro/nonmetro” classification alone to 

distinguish urban and rural populations (e.g., Pender 2019; Ziliak 2018). This practice is problematic. As 

Figure 3 shows, the basic question of whether rural or urban areas have higher poverty rates has distinctly 

different answers depending on how “rural” and “urban” areas are distinguished. The availability of two 

continuous measures, indexing two dimensions of urbanization, allows researchers to complete a more 

thorough and nuanced analysis of variations across geographic regions. 

In this section, using the new indices with 2012-2017 ACS microdata from IPUMS USA (pooling 

six 1-year samples), we illustrate how both poverty rates and individuals’ likelihood of being in poverty 

vary across levels of urbanization as distinguished by both concentration (DENSITY) and population size 

(METPOP10). Using microdata with the new indices enables us to fit regression models predicting 

poverty while controlling for other demographic factors. The use of our continuous measures shows that 

the correlations between poverty, rurality, and other demographic characteristics vary in ways that cannot 

be captured by a simple metro/nonmetro distinction. 

We begin our analysis with the basic METRO classification that had previously been (and still is) 

available in IPUMS USA. PUMAs classified as wholly nonmetro (neither metro nor mixed) have a higher 
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poverty rate than other PUMAs, and the “mixed” PUMAs, those that straddle metro and nonmetro areas, 

have a poverty rate between nonmetro and metro PUMAs’ (Table 1). 

Table 1. Poverty rates by METRO category, 2012-2017 
  Nonmetro Mixed Metro 

Percent in poverty 17.6 16.5 14.4 

N = 18,120,063 
 

Examining how poverty rates vary with the two new indices uncovers a more nuanced geographic 

pattern. Each point in Figure 10 represents a PUMA while the color represents levels of poverty: blue 

represents lower poverty rates and red represents higher rates. This reveals a clear nonlinearity as both the  

 
Figure 10. Relationship between poverty and two urbanization indices of urbanization for 2010 PUMAs. 
IPUMS USA 2012-2017 ACS samples. 
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highest and lowest poverty rates are found in large commuting systems. As in Table 1, we see again that 

metro areas have generally lower rates of poverty than nonmetro areas, but by using two continuous 

indices, we can see how the metro/nonmetro dichotomy masks significant differences in poverty rates 

within metro areas. The high-density PUMAs in large metro areas generally have high poverty rates—

similar to or even higher than the rates in the PUMAs of small commuting systems—while the lower-

density PUMAs in large metro areas, encompassing mostly suburban and exurban communities, appear to 

have the lowest poverty rates overall. 

To quantify how rates vary across this two-dimensional space, we first classify PUMAs along 

both dimensions with four levels of METPOP10 values (breaks at 50,000, 400,000, and 3.2 million) and 

five levels of DENSITY values (breaks at 80, 400, 2,000, and 10,000 persons per square mile). To avoid 

having a class represented by only one PUMA, we drop the lowest DENSITY break (at 80) for PUMAs in 

large commuting systems (above 400,000). This produces 14 classes of PUMAs, each with unique ranges  

Table 2a. Poverty rates (%) by DENSITY and METPOP10, 2012-2017 

DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   22.8 20.5 
2,000-10,000  20.7 16.6 12.6 

400-2,000  15.6 11.6 9.2 
80-400 17.7 16.8 13.6 12.5 
0-80 17.5 18.3 

N = 18,120,063 

Table 2b. Difference in poverty rate (%) by DENSITY and METPOP10 from lowest-poverty class 
(METPOP10 of 3.2m+, DENSITY of 400-2,000), 2012-2017 

DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   13.6 11.3 
2,000-10,000  11.5 7.4 3.4 

400-2,000  6.4 2.4 0.0 
80-400 8.5 7.6 4.3 3.3 
0-80 8.2 9.1 

N = 18,120,063 
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of METPOP10 and DENSITY values. Table 2a shows how poverty rates vary among these classes, with 

the highest rate of poverty (22.8%) found in the densest PUMAs with moderately large CBSA 

populations (between 400,000 and 3.2 million residents). The lowest poverty rates are found in areas with 

medium density in the largest CBSAs (over 3.2 million residents). Table 2b shows how the poverty rate 

for each class differs from the rate for the lowest-poverty class, which we use later as a benchmark for 

analyzing poverty rates in a multiple regression framework. Both tables show that, within each of the four 

size classes, the highest poverty rates occur in the highest-density classes. The PUMAs in small 

commuting systems also have relatively high rates, but not as high as in the high-density PUMA classes. 

Of course, classifying populations according to PUMA-level averages, as in Tables 2a and 2b, 

may obscure variations that are apparent only within PUMAs. Perhaps the highest rates of poverty 

actually occur within the lowest-density census tracts, but if all the PUMAs that contain these tracts also 

include a mix of higher-density tracts, then the distinct characteristics of the lowest-density tracts would 

be “averaged out.” Why then use PUMA-level indices? We reiterate that a key motivation is to enable 

microdata-based analyses that are impossible using existing census summary data. For example, the main 

reason for the higher poverty rates in high-density areas could be that those areas have disproportionately 

high concentrations of higher-poverty demographic groups, such as younger and/or minority populations, 

in which case the relationship between density and poverty rate might be insignificant after controlling for 

individuals’ demographic characteristics. Directly controlling for individuals’ characteristics is not 

possible with census tract summary data, but it is possible using microdata and PUMA-level indices. 

To demonstrate the value of the indices with an analysis that requires microdata, we begin with 

two models that associate poverty with metropolitan status. The first model predicts poverty status based 

only on the METRO status of a person’s PUMA:   

 56789:; = < + 	?METRO. (5) 
 
where ? is a vector of coefficients for each METRO class (mixed and metro, with nonmetro omitted). The 

second model expands on the first by controlling for a large range of demographic characteristics: 

 56789:; = < + 	?METRO + FG (6) 
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where G is a vector of individual-level demographic controls, available only through microdata. 

Specifically, G includes age, sex, race, ethnicity (Hispanic/Latino), nativity, citizenship, marital status, 

health insurance coverage, educational attainment, employment status & sector, year, and geographic 

subregion (census division). Table 5 gives the metro and mixed coefficients after fitting these two models 

through linear regression on 2012-2017 ACS microdata. 

Table 5. Coefficients for percent likelihood of poverty by METRO class, with and without controls, 
2012-2017 

METRO class No controls With demographic controls 
Metro -3.17 -4.01 
Mixed -1.14 -1.01 

Omitted class is nonmetro. N = 18,120,063. All coefficients significant at p < 0.01. 

Based only on metropolitan status, people residing in metro PUMAs are about 3.2 percentage 

points less likely to be in poverty than those living in nonmetro PUMAs. (This is consistent with Table 1, 

which shows the difference between poverty rates in nonmetro and metro PUMAs to be 17.6 - 14.4 = 

3.2). However, when we include a battery of demographic controls, the metro coefficient decreases from  

-3.2 to -4.0, meaning that for individuals with the same demographic characteristics, those living in metro 

PUMAs are about 4 percentage points less likely to be in poverty than those in nonmetro PUMAs. This 

indicates that the demographics that predominate in nonmetro PUMAs would generally yield lower 

poverty rates than the demographics in metro PUMAs, but living in nonmetro PUMAs increases the 

likelihood of poverty enough to produce a higher poverty rate in those areas despite their demographics. 

Clearly, using microdata to control for demographic characteristics can help to reveal key dynamics in 

rural-urban poverty discrepancies. 

Incorporating the two continuous urbanization indices into the analysis yields yet again more 

value. To demonstrate, we estimate the following linear probability model: 

 56789:; = < + 	?DENSITYxMETPOP10 + FG (7) 
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where G is the same vector of controls as in Equation 6 and ? represents coefficients for each DENSITY-

by-METPOP10 class. Table 6 provides the results in a format that can be directly compared with the 

uncontrolled rate differences in Table 2b, with both tables color-coded on the same scale. This 

comparison shows that the differences in the likelihood of poverty, relative to the lowest-poverty 

reference class, are consistently smaller after controlling for demographics. Without controls, the highest 

poverty rate among the classes is 13.6 percentage points above the lowest rate. After controlling for 

demographics, the same two classes differ by only 8.3 points. This indicates that 61% (8.3/13.6) of the 

difference between these classes is explained by the difference in densities and population sizes, and the 

remaining 39% is attributable to demographic differences between the populations in these areas. 

Table 6. Coefficients for percent likelihood of poverty by DENSITY and METPOP10, with controls, 
2012-2017 

 DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   8.3 5.8 
2,000-10,000  8.9 4.6 1.1 

400-2,000  5.5 2.2 n/a 
80-400 7.2 6.5 3.8 2.3 
0-80 7.1 6.9 

Omitted class is METPOP10 of 3.2m+ and DENSITY of 400-2,000. N = 18,120,063. All coefficients significant at 
p < 0.01. 

A final angle we take is to examine how associations between poverty and specific demographic 

characteristics vary across settlement types. We run the following model 

 56789:; = < + FG, (8) 
 
separately for each of the fourteen DENSITY-by-METPOP10 classes, where G is again the same vector 

of controls as in Equations 6 and 7. Table 7a reports the resulting Hispanic/Latino coefficient for each 

class. The pattern is altogether different from the pattern in previous tables. In the class with the highest 

overall poverty rate (22.8 in Table 2b), the difference in poverty between Hispanic/Latino populations and 

other groups is at its smallest (2.1 in Table 7a). The increase for Hispanic/Latino population is greatest (at 

+9.2) in the least dense PUMAs in mid-size metro areas. Table 7b similarly shows how coefficients for 
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noncitizens vary among the classes, and in this case, the likelihood that a noncitizen is in poverty differs 

most from citizens’ likelihood (+6.6) in medium-density PUMAs in moderately small commuting 

systems, and it is generally smallest in both the upper right (denser PUMAs in large metro areas) and 

lower left (low-density PUMAs in small commuting systems). 

Table 7a. Coefficient for Hispanic/Latino likelihood of poverty by DENSITY and METPOP10, with 
controls, 2012-2017 

 DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   2.1 5.7 
2,000-10,000  8.1 7.3 5.7 

400-2,000  6.7 8.4 7.0 
80-400 6.2 7.7 9.2 7.0 
0-80 5.9 5.4 

N = 18,120,063. All coefficients significant at p < 0.01. 

Table 7b. Coefficient for noncitizen likelihood of poverty by DENSITY and METPOP10, with controls, 
2012-2017 

 DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   2.5 3.6 
2,000-10,000  6.5 3.8 3.9 

400-2,000  6.6 4.7 2.9 
80-400 5.6 4.7 5.9 6.1 
0-80 2.6 3.7 

N = 18,120,063. All coefficients significant at p < 0.01. 

 In all, these results demonstrate the utility and flexibility offered by continuous PUMA-level 

indices of urbanization, enabling researchers to distinguish a diverse range of settlement types and to 

quantify associations with robust demographic controls. 

Conclusion 

We introduce two PUMA-based indices—average tract population density (IPUMS variable: DENSITY) 

and average metro/micro-area population (IPUMS variables: METPOP00 and METPOP10)—which 
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correspond to two distinct dimensions of settlement patterns: “concentration” (the local intensity of 

settlement) and “size” (the total population of the commuting system). In this paper, we have specified the 

indices, explained how to interpret them, and demonstrated the value of the indices by using them to 

distinguish a broad range of nonlinear variations in poverty rates and in demographic covariates of 

poverty across the rural-urban universe of settlement patterns. 
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