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Abstract 

 

The Intrinsic Estimator (IE) has been proposed to address the age-period-cohort problem and is 

believed by many to yield robust and reliable estimates.  We, however, show that IE estimates 

are highly sensitive to one’s choice of coding scheme or model parameterization.  We reanalyze 

data from published articles to demonstrate that estimation results using one coding scheme (e.g., 

the zero-to-sum coding) can be dramatically different from those obtained using a different 

coding scheme (e.g., reference group coding).  The results are so different that a researcher 

would sometimes reach opposite conclusions about the effects of age, period, and/or cohort 

depending on the seemingly innocuous choice of coding scheme.  We provide a nontechnical 

explanation for this sensitivity; an appendix provides a mathematical proof.   
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Introduction 

In a series of articles, Fu, Yang, and Land (Fu 2000, 2008; Fu and Hall 2006; Yang, Fu, and 

Land 2004; Yang, Schulhofer-Wohl, Fu, and Land 2008; Yang 2008) proposed the Intrinsic 

Estimator (IE) and argued that it is a general-purpose, robust, reliable, and useful tool for 

estimating age-period-cohort (APC) and similar models, where identification and estimation are 

deeply problematic because of exact linear dependence among the explanatory variables.  For 

example, in their article “The Intrinsic Estimator for Age-Period-Cohort Analysis: What It Is and 

How to Use It” (American Journal of Sociology, vol. 113[6]:1697-1736), Yang, Schulhofer-

Wohl, Fu, and Land describe the IE and how to use it to disentangle age, period, and cohort 

effects in empirical research.  They argue that the IE produces estimates that approximate well 

the “true” age, period, and cohort trends, using the General Social Survey data as an example 

(Yang et al. 2008:1712-1716).  They also use simulated data to argue that the IE performs better 

than the traditional Constrained Generalized Linear Model.  They conclude that the IE can be 

used to produce reliable and useful estimates of the underlying independent effects of age, period, 

and cohort in APC models (Yang et al. 2008:1716-1722).  The IE now enjoys wide popularity in 

many disciplines and has been used in multiple empirical applications (e.g., Clark and 

Einsenstein 2013; Schwadel and Stout 2012; Schwadel 2011; Yang 2008). 

O’Brien (2011) and Luo (forthcoming) raise questions about whether the IE is in fact a 

useful method for estimating the true effects of age, period, and cohort.  In particular, they show 

that like other APC estimators, the IE involves a constraint and they argue that this constraint is 

essentially arbitrary.  

In this comment, we raise additional concerns about the robustness (i.e., sensitivity) and 

thus usefulness of the IE. Specifically, we show that IE estimates can be highly sensitive to a 
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researcher’s choice of coding scheme or model parameterization.  We reanalyze data from three 

published articles to demonstrate that coding the APC model using one coding scheme (e.g., the 

zero-to-sum/ANOVA coding) can give dramatically different results from those obtained using a 

different coding scheme (e.g., using a reference group).  The results are so different that a 

researcher would often reach opposite conclusions about the effects of age, period, and cohort 

depending on the choice of coding scheme.    

The IE’s sensitivity to the coding scheme used in an analysis is in sharp contrast to fully 

identified statistical models, for which different coding schemes necessarily produce equivalent 

results after appropriate transformation.  We provide a nontechnical explanation for this 

sensitivity; an appendix provides a mathematical proof.  In addition, the appendix shows that for 

any choice of parameter estimates among the infinite number of solutions for an APC model, 

there is always a coding scheme in which the IE produces that specific set of estimates.  In other 

words, one can choose any estimate one likes from the possible set of estimates and there will be 

a coding scheme under which the IE produces that estimate.  Because the choice of coding 

scheme is arbitrary, it follows that the IE’s choice of one estimate from the infinite number of 

solutions for an APC model is also arbitrary.   

 

The Intrinsic Estimator 

The IE achieves identification in ways that are both similar to and different from more traditional 

approaches to estimation of APC models.  Because Age, Period, and Cohort are linear functions 

of each other, there are an infinite number of possible estimates for the APC model, all of which 

give identical fitted values for the response variable but which can give highly different 

coefficient estimates of age, period, and cohort effects.  Because all the possible estimates give 
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the same fitted values, there is no way to use the data to choose among them.  The possible 

estimates all lie on a line, called the “solution line,” so if one fixes the value of one parameter 

estimate at any finite value, the values of all the other parameter estimates are then determined 

by the data.  

The problem in doing APC analysis is deciding which set of estimates, that is, which 

point on the solution line, to privilege.  As O’Brien (2011) shows, the IE, like traditional APC 

estimators, imposes a particular constraint on the parameter estimates that determines which 

point along the solution line, that is, which set of parameter estimates, is privileged. 

Traditional approaches to identifying APC models involve either setting some 

parameter(s) to zero, e.g., assuming there is no period effect, or setting two or more parameters 

to be equal, e.g., setting adjacent cohorts or periods to have equal effects.  The presumption is 

that such constraints should be based on theoretical assumptions, though in many cases the 

constraints appear to be ad hoc (Glenn 1976; Rodgers 1982a, 1982b). 

Like traditional estimators, the IE also achieves identification by imposing a constraint 

(O’Brien 2011; Luo forthcoming), but one defined using a different criterion.  Specifically, the 

IE chooses that set of estimates on the solution line that has the smallest variance.  (This criterion 

has a few equivalent forms, one of which is discussed just below.)  Thus the IE uses a statistical 

rather than theoretical or substantive rationale to determine which set of estimates should be 

privileged.  

We make two critical mathematical observations: First, choosing the set of estimates with 

the smallest variance is equivalent to choosing the set of estimates that gives the smallest value 

when the individual parameter estimates are squared and summed; that is, that set of estimates 

that is the shortest distance from the origin.  Second, the IE depends on the design matrix in two 
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senses.  First, for a given coding scheme (parameterization), the constraint implicit in the IE 

depends on the number of age and period (and thus cohort) categories. Also, however, as we 

show below, even with a fixed number of age and period categories, the IE depends on the 

design matrix through the coding scheme that is used.  

Following Glenn (2005:20), Yang et al. (2008:1699) argue that an APC analysis should 

be evaluated with respect to its ability to provide correct estimates more often than not, that is, 

the true parameter estimates, or what O’Brien (2011) calls the data-generating parameters.
1
  

They conclude that the IE satisfies this criterion (Yang et al. 2008:1732).  Furthermore, they 

argue that the essential purpose of the IE is to remove the influence of the coding scheme, or in 

equivalent terms, the design matrix (p. 1707).  Below we show in detail that the IE is sensitive to 

the coding scheme used, sometimes dramatically so.  As such, there is no basis to the claim that 

it removes the effect of the design matrix or, given this, that it provides good estimates of the 

parameters that have generated the data.
2
 

 

Examples: How IE Estimates Change with Coding Schemes 

In this section we demonstrate how IE estimates can change with coding schemes by considering 

three published empirical examples, including studies of mortality (Yang et al. 2004), vocabulary 

knowledge (Yang et al. 2008), and trust (Schwadel and Stout 2012).  In each case we show that 

the IE estimates change depending on which of the three coding schemes is used:  sum-to-

                                                 
1 Some users of the IE appear to believe that it gives unbiased estimates of the true or data-generating parameters 

(e.g., see Schwadel and Stout 2012; Keyes and Miech 2011; Schwadel 2011).  This is false.  The IE gives an 

unbiased estimate of the set of parameter values on the solution line that is closest to the origin. All constrained APC 

estimators give an unbiased estimate of some parameters. Thus IE is not distinctive in this respect.  
2 The IE can be understood as a type of ridge regression estimator (Fu 2000).  However, when using dummy 

variables, the ridge estimator, like the IE, will be sensitive, potentially seriously so, to the coding scheme chosen.  

Yang et al. (2008:1707) describe the IE as a type of principal component estimator.  When the dimension of a factor 

space is two or greater, there are identification issues that principal components does not solve, analogous to those in 

APC models.  Principal components can discover the subspace in which the data lie, but it cannot determine what 

the axes of that subspace should be.  
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zero/ANOVA coding, reference coding with the first group as the reference category, and 

reference coding with the last group as the reference category.   

When working with categorical data, researchers often use different coding schemes, 

typically choosing a coding scheme because of interpretability or because it highlights a 

particular empirical result.  The sum-to-zero/ANOVA and reference group coding schemes are 

most popular because of their interpretability, though in principle, an infinite number of coding 

schemes exist.  In fully identified models, the choice of coding scheme does not affect estimation 

results.  In other words, when appropriately transformed, the parameter estimates are unaffected 

by the coding—by mathematical necessity, they must be identical.  As we will show, in the case 

of underidentified models like the APC model, this is not the case.  

 

Example 1: US Female Mortality Rate from 1960 to 1999 

The first example is mortality rates for US females from 1960 to 1999, used in Yang, Fu, 

and Land (2004).  These authors found that mortality rates increase after age 15; increased in the 

1960s and early 1970s and rose again from 1980 to 1999; and decreased steadily across cohorts 

(p. 98).  We replicated their estimates for age, period, and cohort effects using the sum-to-

zero/ANOVA coding.  In Table A1 in the Appendix, the “∑=0” columns show their estimates, 

with each estimate interpreted as the difference from the global mean associated with an age, 

period, or cohort group.  We then obtained IE estimates using a reference coding with the first 

age, first period, and first cohort category as reference groups, shown in Table A1 in the “βfirst=0” 

columns, so each estimate can be interpreted as the difference of each age, period, or cohort 

group from the first group in each effect.  We also computed the IE estimates using a reference 

coding with the last age, last period, and last cohort category as reference groups, shown in the 
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“βlast=0” columns in Table A1.  Finally, we transformed the results of the reference group 

analyses so that the estimated age effects sum to zero, as do the estimated period and cohort 

effects, to allow direct comparison of the results from using the IE with the different coding 

schemes.  Fig. 1 graphically presents the IE estimates using these coding schemes.  

[Figure 1 about here] 

Fig. 1 shows that the IE estimates can substantially differ depending on the choice of 

coding scheme.  The IE estimated age and cohort effects are qualitatively similar for the three 

coding schemes, but the IE estimates for period effects using the “βfirst=0” coding are strikingly 

different from the IE estimates using the sum-to-zero coding.  While the IE estimates using the 

sum-to-zero coding (identical results shown in Yang et al. (2004:98)) in Fig. 1 indicate an 

upward mortality trend across time periods from 1960 to 1999, the IE estimates using the first-

reference-group coding show a downward trend over the same periods.  Similarly, for the years 

from 1975 to 1999, the IE estimates under the sum-to-zero coding suggest a sharp increase in 

death rates, whereas the IE estimates under the first-reference-group coding show a flat trend.  

Thus, a researcher would reach opposite conclusions about the effects of period depending on the 

coding scheme he or she happened to choose.  

The magnitude of the cohort effects does depend on the choice of coding scheme.  For 

example, the estimated mortality rate for US females in the 1870 to 1874 birth cohort for the 

sum-to-zero coding (shown in Table A1’s “∑=0” column) is    (     )        times the 

global mean, while the estimated morality rate for that birth cohort in the last-category reference 

coding is only    (     )        times the global mean.   

 

Example 2: Verbal Test Scores from 1976 to 2000 
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The IE estimates also critically depend on coding scheme in the example of vocabulary 

knowledge used in Yang et al. (2008:1712-16), where the authors were concerned with the age, 

period, and cohort trends in Americans’ vocabularies.  The outcome is the variable WORDSUM 

in the General Social Survey (GSS), collected from 1976 to 2000.  Yang and colleagues reported 

that the age effects on vocabularies “show a concave pattern,…rising to a peak in the forties” 

(2008: 1714). They also found period and cohort variations in vocabularies, although there were 

no clear linear patterns (p. 1714).  They compared the estimates from the IE with the results from 

the hierarchical age-period-cohort models, and concluded that the estimated trends are “quite 

similar” (p. 1716). 

Table A2 in the Appendix and Fig. 2 show the IE estimates using the same three coding 

schemes used in the previous example.  As above, we transformed the results using the “βfirst=0” 

and “βlast=0” codings to the sum-to-zero coding so the estimated effects can be compared directly.  

The age, period, and cohort effects estimated by the IE technique shown in Fig. 2 dramatically 

differ depending on the choice of coding scheme (model parameterization).  For example, under 

the “∑=0” coding, vocabulary scores first increase with age, but then decrease starting at age 60.  

Under the “βfirst=0”, they increase initially but decrease starting at the age of 30 to 39.  The 

“βlast=0” coding, by contrast, shows that vocabulary knowledge increases through the age span 

considered. 

[Figure 2 about here] 

The estimated period effects also differ qualitatively depending on the coding scheme.  

The “∑=0” coding shows a modest decrease in vocabulary scores until 1986-90 and then a sharp 

increase.  The “βfirst=0” coding shows a consistent increase, while the “βlast=0” coding shows a 

sharp initial decrease and then a flat trend after 1986-90.   
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The IE estimates for cohort effects also differ completely depending on the coding 

scheme.  With the “∑=0” coding, there is little trend in the estimated effects.  The “βfirst=0” 

coding shows strong evidence of an inter-cohort decline, while the “βlast=0” coding shows just 

the opposite, a consistent increase in vocabulary knowledge from the oldest to the youngest 

cohorts.  Thus a researcher who used the “βfirst=0” coding would reach opposite conclusions 

about the period and cohort trends in vocabulary knowledge to the conclusion by another 

researcher who happened to choose the “βlast=0” coding scheme.  

 

Example 3: Trust from 1972 to 2010 

The third empirical example considers change in the level of trust among Americans.  

Schwadel and Stout (2012) applied the IE to the 1972 to 2010 GSS data and showed that “the 

cohorts born before the 1920s are less trusting than those born in the 1920s through 1940s” (p. 

243).  Following these authors, we dichotomized the GSS measure of trust (1 = agree that people 

can be trusted, 0 = disagree or depends).  Table A3 in the Appendix and Fig. 3 present the IE 

estimates of the age, period, and cohort effects in trust level using the sum-to-zero (“∑=0”) 

coding, the first-reference-group (“βfirst=0”) coding, and the last-reference -group (“βlast=0”) 

coding.  

[Figure 3 about here] 

 As Fig. 3 shows, the IE again yields estimates that depend on the choice of coding, 

though less so than in the other two examples.  For example, the estimated age and period effects 

have the same general trend in the three codings but much larger magnitude in the last-reference-

group coding.  However, the magnitude and general trends in the estimated cohort effects differ 

qualitatively for the cohorts born in 1942 and earlier, depending on the coding used.  For 
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example, contrary to Schwadel and Stout’s (2012) conclusion about the inter-cohort increase in 

trust for cohorts born between 1892 and 1942, the IE estimates under the first-reference-group 

coding show a flat pattern across those birth cohorts.  

 

Explaining IE’s Sensitivity  

The above examples show that the results produced by the IE can be highly sensitive to the 

coding scheme a researcher employs, a choice that is of no consequence with fully identified 

models.
3
  A full understanding of the sensitivity of the IE to coding schemes requires a strong 

understanding of linear algebra.  Here, we attempt to provide an intuitive understanding of the 

IE’s sensitivity.  The mathematical appendix provides a more formal treatment.   

Recall that the IE estimate is the point on the solution line that is closest to the origin.  

Consider what happens when we change coding schemes.  First, the solution line in the original 

coding scheme is transformed to a new solution line in the new coding scheme.  It is the same 

solution line, but now represented with respect to the new parameterization.  Second, in 

transforming from the original to the new coding scheme, distances between pairs of points 

change
4
.  As a result, the point on the solution line that is closest to the origin changes; that is, 

the points that are closest to the origin under the two coding schemes are different.  In particular, 

suppose that in the original coding scheme, a point b0 on the solution line is closer to the origin 

than any other point on the solution line; after transforming to the new coding scheme, the 

transformed value T(b0) is, in general, no longer the point closest to the origin among points on 

                                                 
3 There is an important way in which the traditional constrained estimator is superior to the IE estimator.  By its very 

nature, as explained above and in the mathematical appendix, the IE depends on the coding scheme.  This is not the 

case with the traditional constrained estimator.  When a coefficient constraint is imposed, the coding scheme has no 

effect on the estimates because the constraint is invariant to the researcher’s choice of coding scheme, unlike the IE. 
4 If the transformation is an orthogonal transformation, then the distances from the origin of points on the solution 

line are preserved after the transformation.  None of the changes of coding scheme considered in previous sections is 

an orthogonal transformation. 
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the transformed solution line.  The IE estimate—the closest point to the origin on the solution 

line—is sensitive to the coding scheme because the ordering of points on the solution line 

according to their distance from the origin is generally not the same in the original and new 

coding schemes.  This is even true, as shown in the mathematical appendix, with sum-to-zero 

coding schemes that have different omitted categories.  

The fact that the solution line and the measure of distance change with coding schemes is 

illustrated in Fig. 4, which is necessarily stylized because real APC problems have too many 

dimensions to show in a two-dimensional figure.  In Fig. 4a, the dashed line denotes the solution 

line in the sum-to-zero coding scheme (parameterization).  Transforming to the first-reference-

group coding (Fig. 4b) transforms the solution line to Fig. 4b’s vertical dashed line.  In Fig. 4a, 

the point on the solution line that is closest to the origin is (0.5, 0.5), but after being transformed 

to the point (1, -1) in Fig. 4b’s first-reference-group coding scheme, it is no longer closest to the 

origin among points on the solution line. 

[Figure 4 about here] 

This is a disturbing result: Given that there are infinitely many possible coding schemes 

(though most would be difficult to interpret), there are infinitely many IE estimates.  The seemly 

innocuous choice of a coding scheme affects the IE estimates, sometimes very much.  As 

discussed above, because of the identification problem in APC models, producing an estimate 

amounts to choosing one set of estimates from the solution line, which contains the infinitely 

many estimates that are consistent with the data.  As O’Brien (2011) showed, any constrained 

estimation procedure, including the IE, simply picks out one particular set of estimates on the 

solution line.   
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For the IE, however, the situation is even worse.  In the mathematical appendix, we show 

that any set of estimates on the solution line is the IE estimate for an appropriately chosen coding 

scheme/design matrix.  In other words, one can choose any set of estimates on the solution line 

that one wants to privilege, and there will be a coding scheme in which the IE estimates are that 

chosen set.  Using the IE, we can privilege any point on the solution line we want simply by 

choosing the right coding scheme! 

Given these mathematical results, it is not surprising that different design matrices 

resulted in different estimates in the empirical examples.  But how can the IE estimates differ as 

much as they do in the empirical examples?  Exact linear dependence, as in the APC model, can 

be understood as the most extreme form of multicollinearity.  As is well known regarding 

multicollinearity, small changes in the data or in the model specification can change estimates 

dramatically.  When multicollinearity is present, we simply do not have sufficient variation in a 

variable of interest, holding other variables constant, to precisely estimate the effect of that 

variable of interest.  In the case of exact linear dependence, as in the APC model, there is no 

variation at all in, say, Age, when the other variables (Period and Cohort) are held constant.
5
  As 

such, it is perfectly reasonable to expect IE’s results to be highly unstable. 

This comparison of linear dependence to multicollinearity suggests a direction for future 

research.  As the three empirical examples illustrate, the choice of coding scheme, or 

equivalently the choice of constraint that is imposed on the parameters, affects parameter 

estimates dramatically in some cases but not in others.  As for multicollinearity (Belsley et al. 

1980), it would be useful to have formal methods for analyzing the sensitivity of estimates to the 

                                                 
5 Strictly speaking, there is no variation in the linear component of Age; the non-linear components of the three 

effects are identified (Holford 1983). 
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constraint (the IE or other) that is used to privilege one set of estimates.
6
  This is a topic for 

future research.  

 

Conclusion 

“The Intrinsic Estimator for Age-Period-Cohort Analysis,” published in 2008, has been cited 69 

times as of September 2013 and has been used by researchers in different disciplines to address 

important substantive questions.  Many researchers appear convinced that the assumptions 

implicit in the IE do not affect the IE’s ability to estimate, even if only approximately, the “true” 

age, period, and cohort (see e.g., Keyes and Miech 2013; Lanley et al. 2011; Schwadel 2011).  

The empirical and mathematical results presented in this comment and in the appendix contradict 

that optimistic view.  Social scientists should be aware that the seemingly innocuous choice of a 

coding scheme can have a major effect on the estimates produced by the IE and, as a result, on 

the conclusions they reach.  

 Social scientists have long looked for statistical methods that will provide assumption-

free results revealing the underlying structure of empirical data.  As with causal analysis of 

observational data (Pearl 2009, Morgan and Winship 2007), we believe this is an impossible goal. 

Heckman and Robb (1985) stated the situation correctly nearly three decades ago: 

The age-period-cohort effect identification problem arises because analysts want 

something for nothing: a general statistical decomposition of data without specific subject 

                                                 
6 Comparing the IE’s estimates under just three coding schemes, the sum-to-zero and the two reference group coding 

schemes, is unlikely to indicate the true sensitivity of IE estimates to the coding scheme.  The sum-to-zero and 

reference-group coding schemes are simply common, conventional choices.  An alternative approach would be to 

examine the full set of estimates on the solution line.  This would be analogous to what is done in principal 

components analysis, where various rotations of the axes are tried in order to determine what solution makes the 

most sense.  Of course, this has led people using this approach to be accused of trying to “read tea leaves.” 
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matter motivation underlying the decomposition. In a sense it is a blessing for social 

science that a purely statistical approach to the problem is bound to fail. (1985:144-45)  
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NOTES: 1. Data source: Yang, Fu, and Land 2004, Sociological Methodology; 
 2. ∑=0: sum-to-zero coding; 
 3. βfirst = 0: reference-group coding wit the first group omitted for each effect; 
 4. βlast = 0: reference-group coding wit the last group omitted for each effect. 

Figure 1. Estimated APC Trends in Mortality Using IE under Three Coding Schemes 



Figure 2. Estimated APC Trends in Vocabularies Using IE under Three Coding Schemes 

NOTES: 1. Data source: Yang et al. 2008, American Journal of Sociology; 
 2. ∑=0: sum-to-zero coding; 
 3. βfirst = 0: reference-group coding wit the first group omitted for each effect; 
 4. βlast = 0: reference-group coding wit the last group omitted for each effect. 



NOTES: 1. Data source: the General Social Survey, 1972-2010 used in Schwadel and Stout 2012; 
 2. ∑=0: sum-to-zero coding; 
 3. βfirst = 0: reference-group coding wit the first group omitted for each effect; 
 4. βlast = 0: reference-group coding wit the last group omitted for each effect. 

Figure 3. Estimated APC Trends in Trust Using IE under Three Coding Schemes 
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Mathematical Appendix   

 

1.  Preliminaries:  Defining notation; the IE estimate 

 Suppose we have an outcome measure y that we are willing to treat as continuous, e.g., 

WORDSUM score.  (This is not necessary but simplifies the presentation.)  Suppose also that we 

have a  age groups and p  periods, and thus 1a p− +  cohorts, and that we have chosen a coding 

scheme (parameterization) for the APC model, for example, the sum-to-zero coding scheme.  

Then in the usual APC model analysis, we have a vector of outcomes, y , that has mean Xb , with 

design matrix X and parameter vector b as follows.  The design matrix X has one row for each 

observation (i.e., for each element in the vector y ) and one column for each element in b .  The 

parameter vector bhas one element for an intercept, 1a −  elements for the age effect, 1p −  

elements for the period effect, and 2a p+ −  elements for the cohort effects.  Thus bhas 

2( ) 3a p+ −  elements.   

 The APC model is not identified in the sense that the design matrix X  has rank less than 

2( ) 3a p+ − ;  in particular, its rank is smaller than this by one.  Thus, there is exactly one null 

vector 0B , having 2( ) 3a p+ −  elements like b , such that XB0 = 0and 0 0 1ʹ′ =B B , i.e., 0B  has 

Euclidean length 1.  For a given dataset y , the ordinary least-squares estimates of b satisfy the 

equation ʹ′ = ʹ′X Xb X y , but this equation does not have a unique solution because X is not of full 

rank.  If 1b is a solution to this equation, then any solution can be written as 1 0r+b B  for some 

real number r .  This defines the solution line for this coding scheme and dataset y .  In this 

coding scheme, the IE estimate is given by the value of r  that minimizes the (Euclidean) length 
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of 1 0r+b B , or equivalently its squared length, which is 1 0 1 0( ( ))+ ʹ′ +r rb B b B .  Simple calculus 

shows that the squared length is minimized for 0 1ʹ′= −r B b , so the IE estimate is  

( )
( )

( ) ( )

0 1 0 1 0

1 0 0 1 0 1

0 0 1

 –     

 –        because  is a scalar  

   –        where  is the identity matrix of order 2 3. a p

=

=

= +

ʹ′

−

ʹ′

ʹ′

ʹ′

b b B b B

b B B b B b

I B B b I

(1) 

Note that 0b and 0B are orthogonal by construction: 0 0 0 0 1( ) 0ʹ′ = ʹ′ − ʹ′ =B b B B b because 0 0 1ʹ′ =B B .  

Any parameter vector b on the solution line can now be written as 0 0s+b B  for 0s = ʹ′B  b . 

 

2.  Re-parameterizing can change the ordering of points on the solution line according to 

their distance from the origin. 

 Suppose we have written the APC model in one coding scheme with the design matrix 

and parameter vector X and b respectively.  Suppose now that we want to change to a new 

coding scheme.  Then there is an invertible square matrixT of dimension 2( ) 3a p+ −  that 

effects the change from the original to the new coding scheme, as follows:   

   1 ( ) ( )−= =Xb XT Tb X T b T       (2)  

where 1( ) −=X T XT is the design matrix in the new coding scheme and ( ) =b T Tbis the parameter 

in the new coding scheme corresponding tob  in the original coding scheme.  Section 4 of this 

Appendix shows how to deriveT for any choice of original and new coding schemes. 

 So suppose we have an original coding scheme, with design matrixX and null vector 0B .  

Suppose also we have a dataset y , and that the IE estimate for this dataset is 0b , as above.  Then 

as noted, any estimateb in the solution line for this coding scheme has the form 0 0s+b B , for 

0s = ʹ′B b .  Any solution b in the original coding scheme is therefore transformed to 
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0 0( )s= +Tb T b B in the new coding scheme.  In the new coding scheme, the squared distance of 

Tb to the origin is 0 0 0 0( ) ( )s sʹ′ ʹ′ = + ʹ′ ʹ′ +b TTb b B TT b B .  This distance is a quadratic in the scalar 

s , and simple calculus shows that this squared distance is minimized by  

    0 0 0 0/ .s = − ʹ′ ʹ′ ʹ′ ʹ′T B TTb B TTB      (3) 

Thus, the IE solution in the new coding scheme, backtransformed to the original coding scheme, 

is 0 0s+ Tb B .  This is equal to the IE solution in the original coding scheme if and only if 0s =T .  

It is easy to show that 0s =T  if (a)T is an orthogonal matrix, or (b)T has one row proportional to 

0B and its other rows are orthogonal to 0B . (Orthogonal matrices correspond to rigid 

transformations such as rotations and reflections, which preserve distances between pairs of 

points.)  It is also easy to show that all otherT giving 0s =T  depend on 0b , i.e., on the specific 

dataset y .  In other words, some T exist for which 0s =T , but they are few and very specific, and 

they do not include theT that effect changes between any pair of familiar coding schemes, such 

as those considered in the main body of this paper.  Thus, except for uninteresting cases, 

changing coding schemes changes the distances between pairs of points.  In particular, changing 

coding schemes changes the ordering of points in the original coding scheme's solution line 

according to their distance from the origin in the coding scheme defined byT .  This happens 

because the transformationT is not rigid, which means that a vectorb is stretched by different 

amounts in different directions when it is transformed to Tb .  If T has singular value 

decomposition = ʹ′T UDV , forU and V orthogonal matrices andDdiagonal, thenD 's diagonal 

elements describe the differential stretching applied to directions defined by ʹ′V .  Section 4 below 

gives an example. 
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3.  For any estimate b on the solution line, there exists a coding scheme such that b is the IE 

estimate in that coding scheme, back-transformed to the original coding scheme. 

 Suppose we have a age groups and p  periods and data y , and that we have chosen a 

coding scheme, which we will call the original coding scheme.  Then this implies a design matrix 

X , a null vector 0B , and the IE estimate 0b .  Any other solution to the equation ʹ′ = ʹ′X Xb X yhas 

the form 0 0s+b B , for some real number s .  The burden of this section is to show that for any real 

number t , there is an invertible square matrixT  of dimension 2( ) 3r a p= + −  and a new coding 

schemeTb such that the IE estimate in the new coding scheme, backtransformed to the original 

coding scheme, is 0 0t+b B .  First we prove this main claim; then we prove a closely related 

secondary claim, which is stated below. 

Proof of the main claim.  This proof uses the fact that in any given coding scheme, IE's estimate 

minimizes, among points on the solution line, the squared distance from the estimate to the 

origin.  As noted in Section 2, for a given transformation (re-coding)T , the IE estimate in the 

new coding scheme, back-transformed to the original coding scheme, has  

   0 0 0 0/ .s = − ʹ′ ʹ′ ʹ′ ʹ′T B TTb B TTB       (4) 

We need to prove that for any real number t , we can choose aT such that   

   0 0 0 0/ .t s= = − ʹ′ ʹ′ ʹ′ ʹ′T B TTb B TTB      (5) 

Note:  If 0b is the zero vector, then the IE solution in all coding schemes is also the zero vector.  

This case is so unlikely that it is of no interest, so we assume that 0b is not the zero vector.   

 ʹ′T T is positive definite and symmetric of dimension r , so it has spectral decomposition 

ʹ′ = ʹ′T T GDG , whereG is an orthogonal matrix of dimension r  andD is diagonal with r positive 
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diagonal entries; by convention,D 's diagonal entries id are sorted in decreasing order, so 

1 2 rd d d≥ …> .  ChoosingT is equivalent to choosingG andD . 

 For any legalG andD , 0 0 i i i
i
a c dʹ′ ʹ′ =∑B TTb , where 0 1 2( , , , )ra a aʹ′ = …B G  and 

0 1 2( , , , )rc c cʹ′ = …b G  and the sum runs over 1, ,i r= … .  (Note that 2
0 0 1i

i
a = ʹ′ ʹ′ =∑ B GG B  because 

0B has length 1, and 2
0 0i

i
c = ʹ′∑ b b .)  With these definitions, 2

0 0 i i
i
a dʹ′ ʹ′ =∑B TTB .   Thus, we need 

to choose G  — i.e., choose the ia  and ic   — and choose D  — i.e., choose the id  — so that  

   2/ .i i i i i
i i

t a c d a d= −∑ ∑       (6) 

If 2, , rd d…  are fixed at some values and 1d  is made very large, then 2/−∑ ∑i i i i i
i i
a c d a d   

becomes arbitrarily close to 1 1/c a− .  Our proof is finished if we chooseG so that 1 1/c a t− = ;  then 

we let 1d  grow very large and sT  becomes arbitrarily close to t , as needed.  To choose such aG , 

define 0.5
0 0 0 0( )−= ʹ′β b b b , so 0 0 1ʹ′ =β β  and 0 0 0ʹ′ =β B . Then let the first column of G be 

1 0 0(1 )αφ α= + −G β B , whereα is between 0 and 1, and φ  is -1 if 0t >  and 1 if 0t < .  Then 

1 1a α= −  and 0.5
1 0 0( )c αφ= ʹ′b b , so 0.5

1 1 0 0/ ( ) / (1 )c a φ α α− = − ʹ′ −b b .  Set 0.5
0 0/(( ) )t tα = ʹ′ +b b∣∣ ∣∣:   

then 1 1/c a t− = .  

Secondary claim:  Suppose that in the original coding scheme, the true value of the parameter is 

b . Then the IE estimate is an unbiased estimate of 0 0 0( )u = − ʹ′b I B B b , where the subscript  “u ” 

indicates “true,”  referring to the true b .  For any real number t , there is an invertible square 

matrix T  of dimension 2( ) 3r a p= + −  and a new coding scheme Tb  such that the IE estimate 
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in the new coding scheme, back-transformed to the original coding scheme, is unbiased for 

0 0u t+b B .  The proof follows.   

 Again, if 0ub is the zero vector, then 0uTb is also the zero vector for allT .  As before, this 

case so unlikely that it is of no interest, so we assume that 0ub is not the zero vector.  The 

difference between 0ub and the back-transformed IE estimand in the new coding scheme is 

   
( ) ( )

( )

1
0 0 0 0

0 0

             –    –         

  ,

−ʹ′ ʹ′−

=

ʹ′

ʹ′ ʹ′ −⎡ ⎤⎣ ⎦

I B B b T I  T B B  T Tb  

B  B  T T  I  b 
  (7) 

where the expression in square brackets is a scalar and I is the identity matrix of dimension 

2( ) 3a p+ − .  The burden of this proof is to show how to chooseT so 0 ( )t = ʹ′ ʹ′ −B TT I b .  

Recalling that 0 0u s= +b b B  for a particular scalar s , we need 

 ( )0 0 0 0 0                 ut s sʹ′ ʹ′ ʹ′ ʹ′= − = + ʹ′ ʹ′ −B  T T  I  b B T Tb B T TB      (8) 

where 0B , 0ub , and s are fixed and 0 0 0uʹ′ =B b .       

 As above, choosingT is equivalent to choosing an orthogonal matrix G  and a diagonal 

matrixDwith all diagonal elements positive so that ʹ′ = ʹ′T T GDG , and using the notation defined 

in proving the main claim, we need to choose ia , ic , and id , 1, ,i r= … so that    

   2 .i i i i i
i i

t a c d s a d s= + −∑ ∑       (9) 

As in the earlier proof, we do so by fixing 2, , rd d…  at some values (which do not matter) and 

adjusting 1d to get the desired result.  To do this, define the function 

2
1( ) i i i i i

i i
g d a c d s a d s= + −∑ ∑ ; then g 's derivative with respect to 1d is 

   2
1 1 1 1( )g d a c saʹ′ = +        (10) 
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which does not depend on 1d .  To get the desired result, we need only show that we can pickG  

so that 2
1 1 1a c sa+ is positive for the given s  and that we also can pickG so that 2

1 1 1a c sa+ is 

negative for the given s .  Then we can fix ia , ic , and id  for 2, ,4i = …  at any values, pickG so 

that 1( )g dʹ′ has the appropriate sign, and increase 1d until 1( )g d t= . 

 If 0s = , 1 1 1( )g d a cʹ′ = .  As in the proof of the main claim, let the first column ofG be   

1 0 0(1 )αφ α= + −G β B , and set 0.5α = .  Then 0.5
1 1 1 0 0( ) 0.25( )g d a c φʹ′ = = ʹ′b b , which is made 

positive or negative by choosing positive or negativeφ  respectively.  Now suppose 0s ≠ .  Then 

2
1 1 1 1( ) 0g d a c saʹ′ = + > if 1 1/c a s> − , and 2

1 1 1 1( ) 0g d a c saʹ′ = + <  if 1 1/c a s< − .  Either of these 

inequalities can be satisfied as in the proof of the main claim, by defining 1G as above and 

selectingα andφ as needed. 

 

4.  Constructing the transformation matrix T for any change in coding scheme.   

 Recall thatT transforms the (2( ) 3)a p+ − -vector b in the original coding scheme to the 

(2( ) 3)a p+ − -vectorTb in the new coding scheme. The (2( ) 3) (2( ) 3)a p a p+ − × + −  matrixT  

can be constructed as follows.  First, construct the2( ) (2( ) 3)a p a p+ × + − matrix 1T that 

transformsb in the original coding scheme to a 2( )a p+ -vector 1Tb in the full (redundant) coding 

scheme witha parameters for the age effect, p for the period effect, and 1a p+ − for the cohort 

effect, along with the intercept.  Second, construct the (2( ) 3) 2( )a p a p+ − × + matrix 2T that 

transforms a2( )a p+ -vector in the full (redundant) coding scheme to a (2( ) 3)a p+ − -vector in 

the new coding scheme.  Then 2 1=T TT .   
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 For example, suppose we have 3 age groups and 4 periods, so 3a = and 4p = .  Suppose 

the original coding scheme is sum-to-zero with the last group omitted for each of the age, period, 

and cohort effects, so the parameter vectorbhas 11 elements:  the intercept, the first two age 

group effects, the first three period effects, and the first five cohort effects.  Then 1T is the 14 11×  

matrix  

1 =T  

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜ − − − − −⎝ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

. 

 
 Suppose the new coding scheme is the first-category reference group scheme, so that the 

parameter vectorTb has 11 elements:  the intercept, the last two age group effects minus the first 

age group effect;  the last three period effects minus the first period effect;  and the last five 

cohort effects minus the first cohort effect.  Then 2T is the 11 14×  matrix 
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2 =T

1 1 0 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

. 

 
Then T  is the 11 11×  matrix 2 1 ==T T T  

1 1 0 1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 2 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 2 1 1 1 1

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− −
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

− − − − −⎝ ⎠

. 

 
This matrix is invertible; its 11 singular values range in absolute value from 0.78 to 3.27, so the 

ratio of b 's maximally and minimally stretched directions is 3.27/0.78 = 4.20.   

 

5.  The IE estimate is sensitive to the coding scheme, which is even true with sum-to-zero 

coding schemes that have different omitted categories. 

 Consider an example of three age groups and three periods, so 3=a  and 3=p .  

Suppose the original coding scheme is sum-to-zero with the last group omitted for each of the 



10 
 

age, period, and cohort effects, so the parameter vector b has 9 elements:  the intercept, the first 2 

age group effects, the first 2 period effects, and the first 4 cohort effects.  As shown in the section 

above, the 12 × 9 matrix 1T that transforms b in the original coding scheme to the full coding is  

 

1 =T

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

. 

 
Suppose the new coding scheme is the sum-to-zero coding scheme with the first category 

of each effect omitted, so that the parameter vector Tb has 9 elements:  the intercept, the last 2 

age group effects; the last 2 period effects; and the last 4 cohort effects.  Then 2T is a 9 × 12 

matrix 

2 =T

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
Then T is a 9 × 9 matrix, where 2 1 ==T T T  
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1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

 

 
T is invertible but not orthogonal;  its 9 singular values range in absolute value from 0.46 to 

2.19, so the ratio of b ’s maximally and minimally stretched directions is 2.19/0.46 = 4.76.   

To illustrate, we simulate a data set with three age groups, three periods, and five cohorts 

as follows:  

2 2 2~ {10 2 age 0.5 age 1 period 0.5 period 1 cohort 0.5 cohort , 0}σ+ × − × − × − × + × + × =ij i i j j ij ijy . 

For each age-by-period combination, there is one observation, so the total sample size is nine.   

Fig. A1 reports IE estimates for the simulated data using two different sum-to-zero coding 

schemes, namely the sum-to-zero coding with the last category of each effects omitted and the 

same coding with the first category omitted. The resulting two sets of IE estimates are different. 

For example, the estimated cohort effects for the first cohort is 0.75 under the first type of sum-

to-zero coding, whereas the estimated effects is 1.75 under the second type.  



∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0

-5.400 -5.400 -5.400 0-4 0.453 0.088 0.366 1960-64 -0.039 0.103 -0.005 1870 1.008 0.502 0.887

5-9 -2.144 -2.468 -2.221 1965-69 -0.009 0.092 0.015 1875 0.977 0.511 0.866

10-14 -2.354 -2.637 -2.421 1970-74 -0.007 0.054 0.007 1880 0.922 0.496 0.820

15-19 -1.704 -1.947 -1.762 1975-79 -0.067 -0.047 -0.062 1885 0.853 0.468 0.761

20-24 -1.630 -1.833 -1.678 1980-84 -0.043 -0.063 -0.047 1890 0.776 0.431 0.693

25-29 -1.571 -1.733 -1.610 1985-89 0.011 -0.049 -0.003 1895 0.698 0.394 0.626

30-34 -1.377 -1.499 -1.406 1990-94 0.038 -0.063 0.014 1900 0.610 0.347 0.548

35-39 -1.091 -1.172 -1.111 1995-99 0.115 -0.026 0.082 1905 0.522 0.299 0.468

40-44 -0.751 -0.791 -0.760 1910 0.455 0.273 0.412

45-49 -0.398 -0.398 -0.398 1915 0.383 0.241 0.349

50-54 -0.057 -0.016 -0.047 1920 0.317 0.216 0.293

55-59 0.266 0.347 0.286 1925 0.262 0.201 0.247

60-64 0.610 0.732 0.639 1930 0.178 0.158 0.173

65-69 0.956 1.118 0.995 1935 0.077 0.097 0.082

70-74 1.331 1.534 1.380 1940 -0.067 -0.006 -0.052

75-79 1.724 1.967 1.782 1945 -0.204 -0.103 -0.180

80-84 2.157 2.440 2.224 1950 -0.287 -0.145 -0.253

85-89 2.590 2.914 2.667 1955 -0.312 -0.129 -0.268

90-94 2.988 3.353 3.076 1960 -0.319 -0.096 -0.266

1965 -0.460 -0.197 -0.398

1970 -0.620 -0.316 -0.547

1975 -0.748 -0.403 -0.665

1980 -0.934 -0.549 -0.842

1985 -1.137 -0.712 -1.036

1990 -1.342 -0.876 -1.231

1995 -1.607 -1.100 -1.486

Intercept Estimates Age Effects Estimates Period Effects Estimates Cohort Effects Estimates

Table A1. Estimated Age, Period, and Cohort Effects on Mortality under Three Coding Schemes.



∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0

-2.820 -2.820 -2.820 20-24 -0.073 0.030 -0.191 1976-80 -0.004 -0.042 0.038 1901 0.003 0.144 -0.157

25-29 -0.025 0.059 -0.121 1981-85 -0.017 -0.036 0.004 1906 -0.052 0.070 -0.191

30-34 0.018 0.084 -0.057 1986-90 -0.023 -0.023 -0.023 1911 0.006 0.110 -0.111

35-39 0.039 0.086 -0.015 1991-95 0.022 0.041 0.001 1916 0.042 0.126 -0.054

40-44 0.044 0.072 0.012 1996-00 0.022 0.060 -0.021 1921 0.004 0.070 -0.070

45-49 0.038 0.047 0.027 1926 0.004 0.051 -0.049

50-54 0.022 0.013 0.033 1931 -0.014 0.014 -0.046

55-59 0.041 0.013 0.073 1936 -0.007 0.003 -0.017

60-64 0.001 -0.046 0.054 1941 0.023 0.014 0.034

65-69 0.008 -0.058 0.083 1946 0.054 0.025 0.086

70-74 -0.031 -0.115 0.066 1951 0.038 -0.009 0.091

75+ -0.081 -0.184 0.036 1956 -0.011 -0.076 0.064

1961 -0.011 -0.096 0.085

1966 -0.027 -0.130 0.090

1971 -0.033 -0.155 0.106

1976 -0.021 -0.161 0.140

Age Effects Estimates Period Effects Estimates Cohort Effects Estimates

Table A2. Estimated Age, Period, and Cohort Effects on Vocabularies under Three Coding Schemes

Intercept Estimates



∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0 Category ∑=0 βfirst=0 βlast=0

-0.996 -0.996 -0.996 20-24 -0.245 -0.163 -0.340 1972-75 0.121 0.073 0.176 1892 -0.058 0.071 -0.209

25-29 -0.151 -0.083 -0.230 1976-80 0.094 0.060 0.134 1897 -0.057 0.059 -0.192

30-34 -0.116 -0.062 -0.179 1981-85 0.119 0.099 0.143 1902 0.056 0.158 -0.062

35-39 0.013 0.053 -0.035 1986-90 -0.001 -0.008 0.007 1907 -0.036 0.052 -0.139

40-44 0.073 0.100 0.041 1991-95 -0.095 -0.088 -0.103 1912 0.021 0.096 -0.066

45-49 0.097 0.111 0.081 1996-00 -0.073 -0.053 -0.097 1917 0.020 0.081 -0.052

50-54 0.041 0.041 0.041 2001-05 -0.060 -0.026 -0.100 1922 0.121 0.168 0.065

55-59 0.047 0.034 0.063 2006-10 -0.105 -0.058 -0.161 1927 0.093 0.127 0.054

60-64 0.052 0.025 0.084 1932 0.120 0.141 0.097

65-69 0.030 -0.010 0.078 1937 0.092 0.099 0.085

70-74 -0.004 -0.058 0.060 1942 0.168 0.161 0.176

75-79 0.080 0.012 0.159 1947 0.179 0.159 0.203

80+ 0.082 0.001 0.177 1952 0.108 0.074 0.147

1957 0.044 -0.004 0.099

1962 0.037 -0.024 0.108

1967 -0.065 -0.139 0.023

1972 -0.167 -0.255 -0.064

1977 -0.223 -0.325 -0.104

1982 -0.209 -0.324 -0.074

1987 -0.245 -0.374 -0.095

Age Effects Estimates Period Effects Estimates Cohort Effects Estimates

Table A3. Estimated Age, Period, and Cohort Effects on Trust under Three Coding Schemes.

Intercept Estimates



Fig. A1. IE Estimates under Two Different Sum-To-Zero Coding Schemes for Simulated Data 
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